The Lorax Problem: Introduction to Bayesian Networks

T. Donovan, R. Mickey
{"title":"The Lorax Problem: Introduction to Bayesian Networks","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0019","DOIUrl":null,"url":null,"abstract":"The “Lorax Problem” introduces Bayesian networks, another set of methods that makes use of Bayes’ Theorem. The ideas are first explained in terms of a small, standard example that explores two alternative hypotheses for why the grass is wet: the sprinkler is on versus it is raining. The chapter describes how to depict causal models graphically with the use of influence diagrams and directed acyclic graphs. Bayes’ Theorem is used to compute conditional probabilities and to update probabilities once new information is obtained or assumed. The software program Netica is introduced. Finally, the chapter provides a second example of Bayesian networks based on The Lorax by Dr. Seuss. The reader will gain a firm understanding of parent nodes (also known as root nodes), child nodes, conditional probability tables (CPTs), and the chain rule for joint probability.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The “Lorax Problem” introduces Bayesian networks, another set of methods that makes use of Bayes’ Theorem. The ideas are first explained in terms of a small, standard example that explores two alternative hypotheses for why the grass is wet: the sprinkler is on versus it is raining. The chapter describes how to depict causal models graphically with the use of influence diagrams and directed acyclic graphs. Bayes’ Theorem is used to compute conditional probabilities and to update probabilities once new information is obtained or assumed. The software program Netica is introduced. Finally, the chapter provides a second example of Bayesian networks based on The Lorax by Dr. Seuss. The reader will gain a firm understanding of parent nodes (also known as root nodes), child nodes, conditional probability tables (CPTs), and the chain rule for joint probability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lorax问题:贝叶斯网络导论
“Lorax问题”引入了贝叶斯网络,这是另一组利用贝叶斯定理的方法。首先用一个小的标准例子来解释这些想法,这个例子探讨了两种不同的假设,为什么草是湿的:洒水器开着,或者下雨了。本章描述了如何使用影响图和有向无环图以图形方式描述因果模型。贝叶斯定理用于计算条件概率,并在获得或假设新信息时更新概率。介绍了软件程序Netica。最后,本章提供了基于苏斯博士的《the Lorax》的贝叶斯网络的第二个例子。读者将牢固地理解父节点(也称为根节点)、子节点、条件概率表(cpt)和联合概率的链式法则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Maple Syrup Problem: The Normal-Normal Conjugate Probability Mass Functions Bayes’ Theorem The White House Problem: The Beta-Binomial Conjugate Bayesian Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1