Research on filtering method of telemetry data based on whale optimization and wavelet transform

Cheng-Fei Li, Zhang Wang, Fang Pu, Maolin Chen, Li-Yu Daisy Liu
{"title":"Research on filtering method of telemetry data based on whale optimization and wavelet transform","authors":"Cheng-Fei Li, Zhang Wang, Fang Pu, Maolin Chen, Li-Yu Daisy Liu","doi":"10.1117/12.2689586","DOIUrl":null,"url":null,"abstract":"Ground based telemetry stations are usually used to acquire real-time information of flight vehicles, and monitor the flying states in order to guarantee the safety of flight tests. However, when the telemetry ground station tracks the aerial vehicle, some wild values are inevitably included in the received telemetry data due to various interference factors, which can seriously affect the interpretation of the telemetry data and the evaluation of the vehicle performance. In order to make up for the shortage of existing telemetry data wild value elimination algorithms, this paper uses the wavelet transform threshold method to eliminate the wild values in telemetry data based on the principle of wavelet transform, and introduces the swarm intelligence optimization algorithm to obtain the optimal thresholds for different telemetry data adaptively. The optimal threshold and threshold function coefficients are obtained for different telemetry data to achieve better filtering effect. Corresponding results show that the proposed method can effectively eliminate the wild values in the telemetry data and realize the filtering of the telemetry data.","PeriodicalId":118234,"journal":{"name":"4th International Conference on Information Science, Electrical and Automation Engineering","volume":"63 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Information Science, Electrical and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2689586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ground based telemetry stations are usually used to acquire real-time information of flight vehicles, and monitor the flying states in order to guarantee the safety of flight tests. However, when the telemetry ground station tracks the aerial vehicle, some wild values are inevitably included in the received telemetry data due to various interference factors, which can seriously affect the interpretation of the telemetry data and the evaluation of the vehicle performance. In order to make up for the shortage of existing telemetry data wild value elimination algorithms, this paper uses the wavelet transform threshold method to eliminate the wild values in telemetry data based on the principle of wavelet transform, and introduces the swarm intelligence optimization algorithm to obtain the optimal thresholds for different telemetry data adaptively. The optimal threshold and threshold function coefficients are obtained for different telemetry data to achieve better filtering effect. Corresponding results show that the proposed method can effectively eliminate the wild values in the telemetry data and realize the filtering of the telemetry data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鲸鱼优化和小波变换的遥测数据滤波方法研究
地面遥测站通常用于获取飞行器的实时信息,监测飞行器的飞行状态,以保证飞行试验的安全。然而,遥测地面站在对飞行器进行跟踪时,由于各种干扰因素,接收到的遥测数据中不可避免地会包含一些野值,严重影响遥测数据的解释和对飞行器性能的评价。为了弥补现有遥测数据野值消除算法的不足,本文基于小波变换原理,采用小波变换阈值法对遥测数据进行野值消除,并引入群体智能优化算法,自适应获取不同遥测数据的最优阈值。针对不同的遥测数据,得到了最优的阈值和阈值函数系数,以达到较好的滤波效果。结果表明,该方法能有效地消除遥测数据中的野值,实现遥测数据的滤波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A smart brain controlled wheelchair based on TGAM Multi-direction prediction based on SALSTM model for ship motion Study on heart disease prediction based on SVM-GBDT hybrid model Research on intelligent monitoring of roof distributed photovoltaics based on high-reliable power line and wireless communication Design of low-power acceleration processor for convolutional neural networks based on RISC-V
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1