A Statistical Feature-Based Transmission Fault Identification and Classification

Pabitra Kumar Barman, N. Subhrahmanyam, Saptarshi Roy, N. Babu
{"title":"A Statistical Feature-Based Transmission Fault Identification and Classification","authors":"Pabitra Kumar Barman, N. Subhrahmanyam, Saptarshi Roy, N. Babu","doi":"10.1109/SeFeT55524.2022.9908816","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient algorithm for diagnosing the transmission faults using analytical techniques. An on-site dataset is used in this work. Statistical tools have been adapted to determine the feature set extracted from line current Perk’s vector modulus. Fuzzy logic is incorporated for the classification of faulty and healthy conditions. From the confusion matrix, it is proven that this algorithm has been proven to be accurate as it results accurate values in almost all the cases (>95%).","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFeT55524.2022.9908816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an efficient algorithm for diagnosing the transmission faults using analytical techniques. An on-site dataset is used in this work. Statistical tools have been adapted to determine the feature set extracted from line current Perk’s vector modulus. Fuzzy logic is incorporated for the classification of faulty and healthy conditions. From the confusion matrix, it is proven that this algorithm has been proven to be accurate as it results accurate values in almost all the cases (>95%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于统计特征的输电故障识别与分类
本文提出了一种利用分析技术诊断输电系统故障的有效算法。在这项工作中使用了现场数据集。统计工具已经被用来确定从线电流Perk的矢量模数中提取的特征集。采用模糊逻辑对故障状态和健康状态进行分类。从混淆矩阵可以看出,该算法几乎在所有情况下都能得到准确的值(>95%),证明了算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Single-Phase Grid Connected Transformer-less Inverter with Active and Reactive Power Control A Multi-Input Boosting Inverter For PV Applications Implementation of Digital Filters to Improve Dynamic Response of A Single Phase PWM Rectifier Analysis of H6, HERIC and FB Single-Phase Transformerless Grid-Tied Inverter for minimization of leakage current using SVPWM strategy. Single Stage Single Switch Quadruple Output Power Supply for Electric Vehicle Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1