{"title":"Video Semantic Concept Detection Based on Conceptual Correlation and Boosting","authors":"Dan-Wen Chen, Liqiong Deng, Lingda Wu","doi":"10.1109/ICVRV.2011.42","DOIUrl":null,"url":null,"abstract":"Semantic concept detection is a key technique to video semantic indexing. Traditional approaches did not take account of conceptual correlation adequately. A new approach based on conceptual correlation and boosting is proposed in this paper, including three steps: the context based conceptual fusion models using correlative concepts selection are built at first, then a boosting process based on inter-concept correlation is implemented, finally multi-models generated in boosting are fusioned. The experimental results on Trecvid2005 dataset show that the proposed method achieves more remarkable and consistent improvement.","PeriodicalId":239933,"journal":{"name":"2011 International Conference on Virtual Reality and Visualization","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Virtual Reality and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2011.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Semantic concept detection is a key technique to video semantic indexing. Traditional approaches did not take account of conceptual correlation adequately. A new approach based on conceptual correlation and boosting is proposed in this paper, including three steps: the context based conceptual fusion models using correlative concepts selection are built at first, then a boosting process based on inter-concept correlation is implemented, finally multi-models generated in boosting are fusioned. The experimental results on Trecvid2005 dataset show that the proposed method achieves more remarkable and consistent improvement.