Applications of simulation codes based on Monte Carlo method for Radiotherapy

Iury Mergen Knoll, A. Quevedo, M. Salomón Alva Sánchez
{"title":"Applications of simulation codes based on Monte Carlo method for Radiotherapy","authors":"Iury Mergen Knoll, A. Quevedo, M. Salomón Alva Sánchez","doi":"10.5772/intechopen.101323","DOIUrl":null,"url":null,"abstract":"Monte Carlo simulations have been applied to determine and study different parameters that are challenged in experimental measurements, due to its capability in simulating the radiation transport with a probability distribution to interact with electrosferic electrons and some cases with the nucleus from an arbitrary material, which such particle track or history can carry out physical quantities providing data from a studied or investigating quantities. For this reason, simulation codes, based on Monte Carlo, have been proposed. The codes currently available are MNCP, EGSnrc, Geant, FLUKA, PENELOPE, as well as GAMOS and TOPAS. These simulation codes have become a tool for dose and dose distributions, essentially, but also for other applications such as design clinical, tool for commissioning of an accelerator linear, shielding, radiation protection, some radiobiologic aspect, treatment planning systems, prediction of data from results of simulation scenarios. In this chapter will be present some applications for radiotherapy procedures with use, specifically, megavoltage x-rays and electrons beams, in scenarios with homogeneous and anatomical phantoms for determining dose, dose distribution, as well dosimetric parameters through the PENELOPE and TOPAS code.","PeriodicalId":308418,"journal":{"name":"The Monte Carlo Methods - Recent Advances, New Perspectives and Applications [Working Title]","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Monte Carlo Methods - Recent Advances, New Perspectives and Applications [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.101323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Monte Carlo simulations have been applied to determine and study different parameters that are challenged in experimental measurements, due to its capability in simulating the radiation transport with a probability distribution to interact with electrosferic electrons and some cases with the nucleus from an arbitrary material, which such particle track or history can carry out physical quantities providing data from a studied or investigating quantities. For this reason, simulation codes, based on Monte Carlo, have been proposed. The codes currently available are MNCP, EGSnrc, Geant, FLUKA, PENELOPE, as well as GAMOS and TOPAS. These simulation codes have become a tool for dose and dose distributions, essentially, but also for other applications such as design clinical, tool for commissioning of an accelerator linear, shielding, radiation protection, some radiobiologic aspect, treatment planning systems, prediction of data from results of simulation scenarios. In this chapter will be present some applications for radiotherapy procedures with use, specifically, megavoltage x-rays and electrons beams, in scenarios with homogeneous and anatomical phantoms for determining dose, dose distribution, as well dosimetric parameters through the PENELOPE and TOPAS code.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蒙特卡罗方法的仿真代码在放射治疗中的应用
蒙特卡罗模拟已被应用于确定和研究实验测量中面临挑战的不同参数,因为它能够以概率分布模拟辐射输运,与带电电子相互作用,在某些情况下与来自任意材料的原子核相互作用,这种粒子轨迹或历史可以执行物理量,提供来自研究或调查量的数据。为此,提出了基于蒙特卡罗的仿真代码。目前可用的代码有MNCP, EGSnrc, Geant, FLUKA, PENELOPE,以及GAMOS和TOPAS。这些模拟代码基本上已经成为剂量和剂量分布的工具,但也用于其他应用,如临床设计,加速器线性调试工具,屏蔽,辐射防护,某些放射生物学方面,治疗计划系统,从模拟场景结果预测数据。在本章中,将介绍一些放疗程序的应用,特别是,在具有均匀和解剖幻象的情况下,通过PENELOPE和TOPAS代码来确定剂量,剂量分布以及剂量学参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applications of simulation codes based on Monte Carlo method for Radiotherapy Markov Chain Monte Carlo in a Dynamical System of Information Theoretic Particles Monte Carlo and Medical Physics Flooding Fragility Model Development Using Bayesian Regression The Paradigm of Complex Probability and Isaac Newton’s Classical Mechanics: On the Foundation of Statistical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1