Markov Chain Monte Carlo in a Dynamical System of Information Theoretic Particles

T. Ogunfunmi, M. Deb
{"title":"Markov Chain Monte Carlo in a Dynamical System of Information Theoretic Particles","authors":"T. Ogunfunmi, M. Deb","doi":"10.5772/intechopen.100428","DOIUrl":null,"url":null,"abstract":"In Bayesian learning, the posterior probability density of a model parameter is estimated from the likelihood function and the prior probability of the parameter. The posterior probability density estimate is refined as more evidence becomes available. However, any non-trivial Bayesian model requires the computation of an intractable integral to obtain the probability density function (PDF) of the evidence. Markov Chain Monte Carlo (MCMC) is a well-known algorithm that solves this problem by directly generating the samples of the posterior distribution without computing this intractable integral. We present a novel perspective of the MCMC algorithm which views the samples of a probability distribution as a dynamical system of Information Theoretic particles in an Information Theoretic field. As our algorithm probes this field with a test particle, it is subjected to Information Forces from other Information Theoretic particles in this field. We use Information Theoretic Learning (ITL) techniques based on Rényi’s α-Entropy function to derive an equation for the gradient of the Information Potential energy of the dynamical system of Information Theoretic particles. Using this equation, we compute the Hamiltonian of the dynamical system from the Information Potential energy and the kinetic energy. The Hamiltonian is used to generate the Markovian state trajectories of the system.","PeriodicalId":308418,"journal":{"name":"The Monte Carlo Methods - Recent Advances, New Perspectives and Applications [Working Title]","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Monte Carlo Methods - Recent Advances, New Perspectives and Applications [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In Bayesian learning, the posterior probability density of a model parameter is estimated from the likelihood function and the prior probability of the parameter. The posterior probability density estimate is refined as more evidence becomes available. However, any non-trivial Bayesian model requires the computation of an intractable integral to obtain the probability density function (PDF) of the evidence. Markov Chain Monte Carlo (MCMC) is a well-known algorithm that solves this problem by directly generating the samples of the posterior distribution without computing this intractable integral. We present a novel perspective of the MCMC algorithm which views the samples of a probability distribution as a dynamical system of Information Theoretic particles in an Information Theoretic field. As our algorithm probes this field with a test particle, it is subjected to Information Forces from other Information Theoretic particles in this field. We use Information Theoretic Learning (ITL) techniques based on Rényi’s α-Entropy function to derive an equation for the gradient of the Information Potential energy of the dynamical system of Information Theoretic particles. Using this equation, we compute the Hamiltonian of the dynamical system from the Information Potential energy and the kinetic energy. The Hamiltonian is used to generate the Markovian state trajectories of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息论粒子动力系统中的马尔可夫链蒙特卡罗
在贝叶斯学习中,模型参数的后验概率密度由参数的似然函数和先验概率估计出来。后验概率密度估计随着证据的增加而得到改进。然而,任何非平凡贝叶斯模型都需要计算难以处理的积分来获得证据的概率密度函数(PDF)。马尔可夫链蒙特卡罗(MCMC)是一种著名的算法,它通过直接生成后验分布的样本而不计算这个棘手的积分来解决这个问题。我们提出了一种新的MCMC算法的观点,它将概率分布的样本视为信息理论领域中信息理论粒子的动态系统。当我们的算法用一个测试粒子探测该领域时,它会受到来自该领域中其他信息论粒子的信息力。利用基于r尼米α-熵函数的信息理论学习(ITL)技术,导出了信息理论粒子动力系统的信息势能梯度方程。利用该方程,从信息势能和动能出发,计算了动力系统的哈密顿量。哈密顿量用于生成系统的马尔可夫状态轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applications of simulation codes based on Monte Carlo method for Radiotherapy Markov Chain Monte Carlo in a Dynamical System of Information Theoretic Particles Monte Carlo and Medical Physics Flooding Fragility Model Development Using Bayesian Regression The Paradigm of Complex Probability and Isaac Newton’s Classical Mechanics: On the Foundation of Statistical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1