Implementable fast augmented Lagrangian optimization algorithm with application in embedded MPC

A. Pătraşcu, I. Necoara, M. Barbu, S. Caraman
{"title":"Implementable fast augmented Lagrangian optimization algorithm with application in embedded MPC","authors":"A. Pătraşcu, I. Necoara, M. Barbu, S. Caraman","doi":"10.1109/ICSTCC.2015.7321360","DOIUrl":null,"url":null,"abstract":"In this paper we present an adaptive variant of a fast augmented Lagrangian method for solving linearly constrained convex optimization problems arising e.g. in model predictive control for embedded linear systems. Mainly, our method relies on the combination of the excessive-gap-like smoothing technique and the inexact oracle framework, which have been presented in details in [13]. We briefly present the total computational complexity results, in particular we derive an overall computational complexity of order O (1 over ε) projections onto a primal set in order to obtain an ε-optimal solution for our original problem. Moreover, our adaptive variant of fast augmented Lagrangian method is implementable, i.e. it is based on computable stopping criteria and with computational complexity certificates. This makes it suitable for applications to embedded control where we need tight estimates on the computational complexity of the corresponding numerical algorithm.","PeriodicalId":257135,"journal":{"name":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2015.7321360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present an adaptive variant of a fast augmented Lagrangian method for solving linearly constrained convex optimization problems arising e.g. in model predictive control for embedded linear systems. Mainly, our method relies on the combination of the excessive-gap-like smoothing technique and the inexact oracle framework, which have been presented in details in [13]. We briefly present the total computational complexity results, in particular we derive an overall computational complexity of order O (1 over ε) projections onto a primal set in order to obtain an ε-optimal solution for our original problem. Moreover, our adaptive variant of fast augmented Lagrangian method is implementable, i.e. it is based on computable stopping criteria and with computational complexity certificates. This makes it suitable for applications to embedded control where we need tight estimates on the computational complexity of the corresponding numerical algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可实现的快速增广拉格朗日优化算法及其在嵌入式MPC中的应用
本文提出了一种快速增广拉格朗日方法的自适应变体,用于解决嵌入式线性系统的模型预测控制中出现的线性约束凸优化问题。我们的方法主要依赖于过度间隙类平滑技术和不精确oracle框架的结合,这在[13]中有详细介绍。我们简要地给出了总计算复杂度的结果,特别是我们得到了O (1 / ε)阶投影到原始集合上的总计算复杂度,从而得到了原始问题的ε-最优解。此外,我们的快速增广拉格朗日方法的自适应变体是可实现的,即它基于可计算的停止准则并具有计算复杂度证书。这使得它适用于需要严格估计相应数值算法计算复杂度的嵌入式控制应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution from Power Grid to Smart Grid: Design challenges Analysis of phosphorus removal performances in a municipal treatment plant Pneumatic assistant of one degree of freedom for lifting Programming paradigm of a microcontroller with hardware scheduler engine and independent pipeline registers - a software approach The classification of a plant family based on morpho-fractal dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1