{"title":"Fuzzy neural-logic system","authors":"L. Hsu, H. H. Teh, P. Wang, S. Chan, K. Loe","doi":"10.1109/IJCNN.1992.287128","DOIUrl":null,"url":null,"abstract":"A realization of fuzzy logic by a neural network is described. Each node in the network represents a premise or a conclusion. Let x be a member of the universal set, and let A be a node in the network. The value of activation of node A is taken to be the value of the membership function at point x, m/sub A/(x). A logical operation is defined by a set of weights which are independent of x. Given any value of x, a preprocessor will determine the values of the membership function for all the premises that correspond to the input nodes. These are treated as input to the network. A propagation algorithm is used to emulate the inference process. When the network stabilizes, the value of activation at an output node represents the value of the membership function that indicates the degree to which the given conclusion is true. Weight assignment for the standard logical operations is discussed. It is also shown that the scheme makes it possible to define more general logical operations.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.287128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A realization of fuzzy logic by a neural network is described. Each node in the network represents a premise or a conclusion. Let x be a member of the universal set, and let A be a node in the network. The value of activation of node A is taken to be the value of the membership function at point x, m/sub A/(x). A logical operation is defined by a set of weights which are independent of x. Given any value of x, a preprocessor will determine the values of the membership function for all the premises that correspond to the input nodes. These are treated as input to the network. A propagation algorithm is used to emulate the inference process. When the network stabilizes, the value of activation at an output node represents the value of the membership function that indicates the degree to which the given conclusion is true. Weight assignment for the standard logical operations is discussed. It is also shown that the scheme makes it possible to define more general logical operations.<>