Neural Network for Forecasting High Price and Low Price on Foreign Exchange Market

Krin Chinprasatsak, N. Niparnan, A. Sudsang
{"title":"Neural Network for Forecasting High Price and Low Price on Foreign Exchange Market","authors":"Krin Chinprasatsak, N. Niparnan, A. Sudsang","doi":"10.1109/ecti-con49241.2020.9158133","DOIUrl":null,"url":null,"abstract":"This research compares 4 neural networks from the original researches (I. Backpropagation Neural Network II. Bayesian Regularized Neural Network III. Empirical Mode Decomposition Stochastic Time Strength Neural Network IV. Random Data-time Effective Radial Basis Function Neural Network) and 2 proposed neural networks (I. Empirical Mode Decomposition Random Data-time Effective Radial Basis Function Neural Network II. Empirical Mode Decomposition Random Data-time Effective Bayesian Regularized Neural Network) for predicting the exchange rate of EUR/USD currency pairs using input as a technical indicator and evaluating the networks with trading simulations consisting of investment strategies, risk management methods and financial management principles. The experiments show that the proposed neural networks yield higher returns than the original researches.","PeriodicalId":371552,"journal":{"name":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecti-con49241.2020.9158133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research compares 4 neural networks from the original researches (I. Backpropagation Neural Network II. Bayesian Regularized Neural Network III. Empirical Mode Decomposition Stochastic Time Strength Neural Network IV. Random Data-time Effective Radial Basis Function Neural Network) and 2 proposed neural networks (I. Empirical Mode Decomposition Random Data-time Effective Radial Basis Function Neural Network II. Empirical Mode Decomposition Random Data-time Effective Bayesian Regularized Neural Network) for predicting the exchange rate of EUR/USD currency pairs using input as a technical indicator and evaluating the networks with trading simulations consisting of investment strategies, risk management methods and financial management principles. The experiments show that the proposed neural networks yield higher returns than the original researches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的外汇市场高价和低价预测
本研究比较了原始研究的4种神经网络(1 .反向传播神经网络;贝叶斯正则化神经网络III。经验模态分解随机时间强度神经网络IV.随机数据-时间有效径向基函数神经网络)和2个提出的神经网络(I.经验模态分解随机数据-时间有效径向基函数神经网络II.随机数据-时间有效径向基函数神经网络)。经验模式分解随机数据-时间有效贝叶斯正则化神经网络)用于预测欧元/美元货币对的汇率,使用输入作为技术指标,并通过由投资策略,风险管理方法和财务管理原则组成的交易模拟评估网络。实验结果表明,本文提出的神经网络比原来的研究方法获得了更高的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simple Tunable Biquadratic Digital Bandpass Filter Design for Spectrum Sensing in Cognitive Radio ElectricVehicle Simulator Using DC Drives Comparison of Machine Learning Algorithm’s on Self-Driving Car Navigation using Nvidia Jetson Nano Enhancing CNN Based Knowledge Graph Embedding Algorithms Using Auxiliary Vectors: A Case Study of Wordnet Knowledge Graph A Study of Radiated EMI Predictions from Measured Common-mode Currents for Switching Power Supplies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1