Converting an Indonesian Constituency Treebank to the Penn Treebank Format

Jessica Naraiswari Arwidarasti, Ika Alfina, A. Krisnadhi
{"title":"Converting an Indonesian Constituency Treebank to the Penn Treebank Format","authors":"Jessica Naraiswari Arwidarasti, Ika Alfina, A. Krisnadhi","doi":"10.1109/IALP48816.2019.9037723","DOIUrl":null,"url":null,"abstract":"A constituency treebank is a key component for deep syntactic parsing of natural language sentences. For Indonesian, this task is unfortunately hindered by the fact that the only one constituency treebank publicly available is rather small with just over 1000 sentences, and not only that, it employs a format incompatible with readily available constituency treebank processing tools. In this work, we present a conversion of the existing Indonesian constituency treebank to the widely accepted Penn Treebank format. Specifically, the conversion adjusts the bracketing format for compound words as well as the POS tagset according to the Penn Treebank format. In addition, we revised the word segmentation and POS tagging of a number of tokens. Finally, we performed an evaluation on the treebank quality by employing the Shift-Reduce parser from Stanford CoreNLP to create a parser model. A 10-fold cross-validated experiment on the parser model yields an F1-score of 70.90%.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A constituency treebank is a key component for deep syntactic parsing of natural language sentences. For Indonesian, this task is unfortunately hindered by the fact that the only one constituency treebank publicly available is rather small with just over 1000 sentences, and not only that, it employs a format incompatible with readily available constituency treebank processing tools. In this work, we present a conversion of the existing Indonesian constituency treebank to the widely accepted Penn Treebank format. Specifically, the conversion adjusts the bracketing format for compound words as well as the POS tagset according to the Penn Treebank format. In addition, we revised the word segmentation and POS tagging of a number of tokens. Finally, we performed an evaluation on the treebank quality by employing the Shift-Reduce parser from Stanford CoreNLP to create a parser model. A 10-fold cross-validated experiment on the parser model yields an F1-score of 70.90%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将印尼选区树库转换为宾州树库格式
选区树库是自然语言句子深度句法分析的关键组成部分。对于印尼语来说,不幸的是这项任务受到阻碍,因为唯一一个公开的选区树库相当小,只有1000多个句子,不仅如此,它采用的格式与现有的选区树库处理工具不兼容。在这项工作中,我们将现有的印度尼西亚选区树库转换为广泛接受的宾州树库格式。具体来说,转换根据Penn Treebank格式调整复合词的括号格式和POS标记集。此外,我们修订了一些令牌的分词和词性标注。最后,我们通过使用斯坦福CoreNLP的Shift-Reduce解析器来创建解析器模型,对树库质量进行了评估。在解析器模型上进行10次交叉验证实验,f1得分为70.90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A General Procedure for Improving Language Models in Low-Resource Speech Recognition Automated Prediction of Item Difficulty in Reading Comprehension Using Long Short-Term Memory An Measurement Method of Ancient Poetry Difficulty for Adaptive Testing How to Answer Comparison Questions An Enhancement of Malay Social Media Text Normalization for Lexicon-Based Sentiment Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1