Lucie Broyde, Kent W. Nixon, Xiang Chen, Hai Helen Li, Yiran Chen
{"title":"MobiCore: An adaptive hybrid approach for power-efficient CPU management on Android devices","authors":"Lucie Broyde, Kent W. Nixon, Xiang Chen, Hai Helen Li, Yiran Chen","doi":"10.1109/SOCC.2017.8226044","DOIUrl":null,"url":null,"abstract":"Smartphones are becoming essential devices used for various types of applications in our daily life. To satisfy the ever-increasing performance requirement, the number of CPU cores in a phone keeps growing, which imposes a great impact on its power consumption. This work presents a series of analysis to understand how the current Android resource management policy adjusts CPU features. Our results indicate a significant improvement margin for CPU power efficiency in modern Android smartphones. We then propose MobiCore — a power-efficient CPU management scheme that can optimize the use of Dynamic and Frequency Voltage Scaling (DVFS) and the Dynamic Core Scaling (DCS) techniques with a sensitive control on CPU bandwidth. The measurements on the real systems prove that MobiCore can achieve substantial CPU power reduction compared to state-of-the-art architectures.","PeriodicalId":366264,"journal":{"name":"2017 30th IEEE International System-on-Chip Conference (SOCC)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 30th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2017.8226044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Smartphones are becoming essential devices used for various types of applications in our daily life. To satisfy the ever-increasing performance requirement, the number of CPU cores in a phone keeps growing, which imposes a great impact on its power consumption. This work presents a series of analysis to understand how the current Android resource management policy adjusts CPU features. Our results indicate a significant improvement margin for CPU power efficiency in modern Android smartphones. We then propose MobiCore — a power-efficient CPU management scheme that can optimize the use of Dynamic and Frequency Voltage Scaling (DVFS) and the Dynamic Core Scaling (DCS) techniques with a sensitive control on CPU bandwidth. The measurements on the real systems prove that MobiCore can achieve substantial CPU power reduction compared to state-of-the-art architectures.