Disentangling Preference Representations for Recommendation Critiquing with ß-VAE

Preksha Nema, Alexandros Karatzoglou, Filip Radlinski
{"title":"Disentangling Preference Representations for Recommendation Critiquing with ß-VAE","authors":"Preksha Nema, Alexandros Karatzoglou, Filip Radlinski","doi":"10.1145/3459637.3482425","DOIUrl":null,"url":null,"abstract":"Modern recommender systems usually embed users and items into a learned vector space representation. Similarity in this space is used to generate recommendations, and recommendation methods are agnostic to the structure of the embedding space. Motivated by the need for recommendation systems to be more transparent and controllable, we postulate that it is beneficial to assign meaning to some of the dimensions of user and item representations. Disentanglement is one technique commonly used for this purpose. We presenta novel supervised disentangling approach for recommendation tasks. Our model learns embeddings where attributes of interest are disentangled, while requiring only a very small number of labeled items at training time. The model can then generate interactive and critiquable recommendations for all users, without requiring any labels at recommendation time, and without sacrificing any recommendation performance. Our approach thus provides users with levers to manipulate, critique and fine-tune recommendations, and gives insight into why particular recommendations are made. Given only user-item interactions at recommendation time, we show that it identifies user tastes with respect to the attributes that have been disentangled, allowing for users to manipulate recommendations across these attributes.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Modern recommender systems usually embed users and items into a learned vector space representation. Similarity in this space is used to generate recommendations, and recommendation methods are agnostic to the structure of the embedding space. Motivated by the need for recommendation systems to be more transparent and controllable, we postulate that it is beneficial to assign meaning to some of the dimensions of user and item representations. Disentanglement is one technique commonly used for this purpose. We presenta novel supervised disentangling approach for recommendation tasks. Our model learns embeddings where attributes of interest are disentangled, while requiring only a very small number of labeled items at training time. The model can then generate interactive and critiquable recommendations for all users, without requiring any labels at recommendation time, and without sacrificing any recommendation performance. Our approach thus provides users with levers to manipulate, critique and fine-tune recommendations, and gives insight into why particular recommendations are made. Given only user-item interactions at recommendation time, we show that it identifies user tastes with respect to the attributes that have been disentangled, allowing for users to manipulate recommendations across these attributes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ß-VAE的推荐评价偏好表示解耦
现代推荐系统通常将用户和项目嵌入到学习的向量空间表示中。该空间的相似度用于生成推荐,推荐方法与嵌入空间的结构无关。由于推荐系统需要更加透明和可控,我们假设为用户和项目表示的某些维度分配意义是有益的。解开缠结是一种通常用于此目的的技术。我们提出了一种新的有监督的推荐任务解纠缠方法。我们的模型学习感兴趣的属性被解开的嵌入,而在训练时只需要非常少量的标记项目。然后,该模型可以为所有用户生成交互式和可批评的推荐,在推荐时不需要任何标签,也不会牺牲任何推荐性能。因此,我们的方法为用户提供了操纵、批评和微调建议的杠杆,并深入了解为什么要提出特定的建议。仅给定推荐时的用户-项目交互,我们表明它根据已解耦的属性识别用户品味,允许用户跨这些属性操作推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1