Combined Effects of Eccentricity and Internal Fins on the Shell and Tube Latent Heat Storage Systems

{"title":"Combined Effects of Eccentricity and Internal Fins on the Shell and Tube Latent Heat Storage Systems","authors":"","doi":"10.35940/ijrte.f9537.059120","DOIUrl":null,"url":null,"abstract":"A numerical simulation study was performed on shell and tube configuration for latent heat storage applications where a Phase Change Material “PCM” - N-eicosane -was used to fill the shell side. The effects of smooth tube eccentricity from the shell center were investigated first, two values of eccentricity (ε=0.267, ε=0.533) were compared to the concentric case (ε=0). It was found out that increasing the eccentricity reduces the melting time by 5% and 10% for ε=0.267 and 0.533 respectively. Then the combined effects of eccentricity and attaching fins to the tube within the shell side were investigated for two fin types: straight rectangular fins and flipped triangular fins. The fin addition to the concentric tube reduced the melting time by about 36%, whereas combining the fins - of either type - to the tube of eccentricities of 0.267 and 0.533 reduced the melting by almost 41 % and 48% respectively, when compared to the smooth concentric tube case","PeriodicalId":220909,"journal":{"name":"International Journal of Recent Technology and Engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Recent Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijrte.f9537.059120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A numerical simulation study was performed on shell and tube configuration for latent heat storage applications where a Phase Change Material “PCM” - N-eicosane -was used to fill the shell side. The effects of smooth tube eccentricity from the shell center were investigated first, two values of eccentricity (ε=0.267, ε=0.533) were compared to the concentric case (ε=0). It was found out that increasing the eccentricity reduces the melting time by 5% and 10% for ε=0.267 and 0.533 respectively. Then the combined effects of eccentricity and attaching fins to the tube within the shell side were investigated for two fin types: straight rectangular fins and flipped triangular fins. The fin addition to the concentric tube reduced the melting time by about 36%, whereas combining the fins - of either type - to the tube of eccentricities of 0.267 and 0.533 reduced the melting by almost 41 % and 48% respectively, when compared to the smooth concentric tube case
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
偏心和内翅片对壳管潜热蓄热系统的综合影响
采用相变材料“PCM”(n -廿烷)填充壳侧,对潜热储层的管壳结构进行了数值模拟研究。首先研究了光滑管偏心距壳中心的影响,比较了两个偏心距值(ε=0.267, ε=0.533)与同心管偏心距值(ε=0)的差异。结果表明,当ε=0.267和0.533时,增大偏心距可使熔炼时间分别缩短5%和10%。在此基础上,研究了直矩形翅片和翻转三角翅片两种翅片类型的壳侧偏心率和附鳍对壳侧管的综合影响。与光滑的同心管相比,在同心管上加翅片可减少约36%的熔化时间,而在偏心率为0.267和0.533的同心管上加翅片可分别减少近41%和48%的熔化时间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Defect Estimation using Machine Learning Algorithms Plant Leaf Disease Detection and Classification using Optimized CNN Model Industrial Internet of Things (IIoT) of Forensic and Vulnerabilities Stabilization of Black cotton soil using Fly ash Effect of Admixing Fly Ash on Cementing Characteristics of Magnesium Oxychloride Cement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1