Majed Saad, Feyiz Chris Lteif, A. Ghouwayel, Hussein Hijazi, J. Palicot, F. Bader
{"title":"Generalized Spatial Modulation in Highly Correlated Channels","authors":"Majed Saad, Feyiz Chris Lteif, A. Ghouwayel, Hussein Hijazi, J. Palicot, F. Bader","doi":"10.1109/PIMRCW.2019.8880828","DOIUrl":null,"url":null,"abstract":"Generalized spatial modulation (GSM) is a promising technique that can highly increase the spectral efficiency for ultra-high data rate systems. However, its performance degrades in highly correlated channels such as those in the millimeter wave (mmWave) and sub-Terahertz (sub-THz) bands. GSM conveys information by the index of the activated transmit antenna combination (TAC) and by the M-ary symbols. In conventional GSM, the legitimate TACs are randomly selected, where their number should be a power of 2. In this paper, a simplified EGSM (S-EGSM) based on TAC selection but without instantaneous channel side information (CSI) is proposed for highly correlated channels. Moreover, an efficient Index-to-Bit mapping for spatial bits based on Gray coding is proposed to reduce the spatial bit-error rate (BER) instead of using the normal binary mapping as in conventional GSM. Simulation results show that the proposed TAC selection without instantaneous CSI (S-EGSM) outperforms the existing method by 1.4 dB in highly correlated channels. In addition, the proposed S-EGSM when compared to TAC selection with instantaneous CSI can be considered as a good tradeoff between performance and complexity since it reduces the feedback and real-time computation overhead due to instantaneous TAC selection. Finally, simulation results of gray coding for spatial bits show a performance gain of the order of 1-2 dB in highly correlated channels, and which becomes less significant in case of low spatially correlated channels.","PeriodicalId":158659,"journal":{"name":"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRCW.2019.8880828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Generalized spatial modulation (GSM) is a promising technique that can highly increase the spectral efficiency for ultra-high data rate systems. However, its performance degrades in highly correlated channels such as those in the millimeter wave (mmWave) and sub-Terahertz (sub-THz) bands. GSM conveys information by the index of the activated transmit antenna combination (TAC) and by the M-ary symbols. In conventional GSM, the legitimate TACs are randomly selected, where their number should be a power of 2. In this paper, a simplified EGSM (S-EGSM) based on TAC selection but without instantaneous channel side information (CSI) is proposed for highly correlated channels. Moreover, an efficient Index-to-Bit mapping for spatial bits based on Gray coding is proposed to reduce the spatial bit-error rate (BER) instead of using the normal binary mapping as in conventional GSM. Simulation results show that the proposed TAC selection without instantaneous CSI (S-EGSM) outperforms the existing method by 1.4 dB in highly correlated channels. In addition, the proposed S-EGSM when compared to TAC selection with instantaneous CSI can be considered as a good tradeoff between performance and complexity since it reduces the feedback and real-time computation overhead due to instantaneous TAC selection. Finally, simulation results of gray coding for spatial bits show a performance gain of the order of 1-2 dB in highly correlated channels, and which becomes less significant in case of low spatially correlated channels.