Objective grading of facial paralysis using artificial intelligence analysis of video data

Stewart McGrenary, B. O'Reilly, J. Soraghan
{"title":"Objective grading of facial paralysis using artificial intelligence analysis of video data","authors":"Stewart McGrenary, B. O'Reilly, J. Soraghan","doi":"10.1109/CBMS.2005.78","DOIUrl":null,"url":null,"abstract":"Facial paralysis is a debilitating condition in which sufferers experience unilateral paralysis of the left or right facial nerve. An evidence based assessment of a patient's condition is almost impossible because all current grading scales are subjective. A quantitative, practical, reliable system would be an invaluable tool in this field of neurootology. Demonstrated here is a system which intelligently quantifies the facial damage in 43 testing videos from 14 subjects. Using an artificial neural network the average mean squared error for the system is 1.6%.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Facial paralysis is a debilitating condition in which sufferers experience unilateral paralysis of the left or right facial nerve. An evidence based assessment of a patient's condition is almost impossible because all current grading scales are subjective. A quantitative, practical, reliable system would be an invaluable tool in this field of neurootology. Demonstrated here is a system which intelligently quantifies the facial damage in 43 testing videos from 14 subjects. Using an artificial neural network the average mean squared error for the system is 1.6%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视频数据的人工智能分析对面瘫进行客观分级
面瘫是一种使人衰弱的疾病,患者会经历左侧或右侧面神经的单侧瘫痪。对病人的病情进行基于证据的评估几乎是不可能的,因为目前所有的评分标准都是主观的。一个定量的、实用的、可靠的系统将是神经根学领域的宝贵工具。这里展示的是一个系统,它可以智能地量化来自14个受试者的43个测试视频中的面部损伤。使用人工神经网络,系统的平均均方误差为1.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov model-based clustering for efficient patient care Incremental learning of ensemble classifiers on ECG data Grid-enabled workflows for data intensive medical applications Case-based tissue classification for monitoring leg ulcer healing Optimisation of neural network training through pre-establishment of synaptic weights applied to body surface mapping classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1