Automatic Premature Ventricular Contractions Detection for Multi-Lead Electrocardiogram Signal

Mohamad Mahmoud Al Rahhal, N. A. Ajlan, Y. Bazi, H. Alhichri, T. Rabczuk
{"title":"Automatic Premature Ventricular Contractions Detection for Multi-Lead Electrocardiogram Signal","authors":"Mohamad Mahmoud Al Rahhal, N. A. Ajlan, Y. Bazi, H. Alhichri, T. Rabczuk","doi":"10.1109/EIT.2018.8500197","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an electrocardiogram (ECG) technique for the automatic detection of Premature Ventricular Contractions (PVC) based on multi-lead signals and on a deep learning architecture which is built using Stacked Denoising Autoencoders (SDAEs) networks. The proposed method consists of two main stages; feature learning and classification. In the first stage, we learn a new feature representation from data using SDAEs. Regarding the classification, we add a softmax regression layer on the top of the resulting hidden representation layer yielding a deep neural network (DNN). The proposed method fuses the results of several ECG leads (up to 12) in order to increase the detection accuracy. In the experiments, we use INCART database to test the proposed DNN multi-lead method. The obtained results are 98.6%, 91.4%, and 97.7% respectively for overall accuracy (OA), average sensitivity (Se), and average positive productivity (Pp).","PeriodicalId":188414,"journal":{"name":"2018 IEEE International Conference on Electro/Information Technology (EIT)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2018.8500197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we propose an electrocardiogram (ECG) technique for the automatic detection of Premature Ventricular Contractions (PVC) based on multi-lead signals and on a deep learning architecture which is built using Stacked Denoising Autoencoders (SDAEs) networks. The proposed method consists of two main stages; feature learning and classification. In the first stage, we learn a new feature representation from data using SDAEs. Regarding the classification, we add a softmax regression layer on the top of the resulting hidden representation layer yielding a deep neural network (DNN). The proposed method fuses the results of several ECG leads (up to 12) in order to increase the detection accuracy. In the experiments, we use INCART database to test the proposed DNN multi-lead method. The obtained results are 98.6%, 91.4%, and 97.7% respectively for overall accuracy (OA), average sensitivity (Se), and average positive productivity (Pp).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多导联心电图信号的室性早搏自动检测
在本文中,我们提出了一种基于多导联信号和使用堆叠降噪自动编码器(SDAEs)网络构建的深度学习架构的心电图(ECG)技术,用于自动检测室性早衰(PVC)。该方法主要分为两个阶段;特征学习和分类。在第一阶段,我们使用SDAEs从数据中学习新的特征表示。关于分类,我们在得到的隐藏表示层的顶部添加了一个softmax回归层,从而产生一个深度神经网络(DNN)。该方法将多导联(最多12条)的检测结果进行融合,以提高检测精度。在实验中,我们使用INCART数据库对所提出的深度神经网络多导联方法进行了测试。总体准确度(OA)、平均灵敏度(Se)和平均阳性生产率(Pp)分别为98.6%、91.4%和97.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing A Dynamic Queueing Model for The Airport Check-in Process Issues and Challenges in VANET Routing Protocols Depiction of a Circulated Double Psi-Shaped Microstrip Antenna for Ku-Band Satellite Applications A Generic Approach CNN-Based Camera Identification for Manipulated Images Intelligent System Demonstrator for Secure Luggage Handling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1