Malware Variants Identification in Practice

Marcus Botacin, A. Grégio, P. De Geus
{"title":"Malware Variants Identification in Practice","authors":"Marcus Botacin, A. Grégio, P. De Geus","doi":"10.5753/sbseg.2019.13960","DOIUrl":null,"url":null,"abstract":"Malware are persistent threats to computer systems and analysis procedures allow developing countermeasures to them. However, as samples are spreading on growing rates, malware clustering techniques are required to keep analysis procedures scalable. Current clustering approaches use Call Graphs (CGs) to identify polymorphic samples, but they consider only individual functions calls, thus failing to cluster malware variants created by replacing sample's original functions by semantically-equivalent ones. To solve this problem, we propose a behavior-based classification procedure able to group functions on classes, thus reducing analysis procedures costs. We show that classifying samples according their behaviors (via function call semantics) instead by their pure API invocation is a more effective way to cluster malware variants. We also show that using a continence metric instead of a similarity metric helps to identify malware variants when a sample is embedded in another.","PeriodicalId":221963,"journal":{"name":"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg.2019.13960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malware are persistent threats to computer systems and analysis procedures allow developing countermeasures to them. However, as samples are spreading on growing rates, malware clustering techniques are required to keep analysis procedures scalable. Current clustering approaches use Call Graphs (CGs) to identify polymorphic samples, but they consider only individual functions calls, thus failing to cluster malware variants created by replacing sample's original functions by semantically-equivalent ones. To solve this problem, we propose a behavior-based classification procedure able to group functions on classes, thus reducing analysis procedures costs. We show that classifying samples according their behaviors (via function call semantics) instead by their pure API invocation is a more effective way to cluster malware variants. We also show that using a continence metric instead of a similarity metric helps to identify malware variants when a sample is embedded in another.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
恶意软件变体识别实践
恶意软件是对计算机系统的持续威胁,分析程序允许开发针对它们的对策。然而,随着样本以越来越快的速度传播,需要恶意软件聚类技术来保持分析过程的可扩展性。当前的聚类方法使用调用图(CGs)来识别多态样本,但它们只考虑单个函数调用,因此无法聚类通过用语义等效的函数替换样本的原始函数而产生的恶意软件变体。为了解决这一问题,我们提出了一种基于行为的分类过程,可以将功能分组到类上,从而降低分析过程的成本。我们表明,根据它们的行为(通过函数调用语义)而不是通过它们的纯API调用对样本进行分类是一种更有效的聚类恶意软件变体的方法。我们还表明,当一个样本嵌入到另一个样本中时,使用控制度量而不是相似性度量有助于识别恶意软件变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Secure White Box Implementation of AES Against First Order DCA Defacebot: Uma ferramenta de detecção e notificação de ataques de desfiguração utilizando mecanismos gerenciados por bot de aplicativo de mensagens instantâneas Uma abordagem como ferramenta de apoio ao CSIRT Mitigando os Efeitos de GAN em Classificação de Imagens com CNN An evaluation of a three-modal hand-based database to forensic-based gender recognition Aceleração de Assinaturas Baseadas em Atributos para Internet das Coisas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1