Fabrication technology to increase surface area of ionomer membrane material and its application towards high surface area electric double-layer capacitors

A. Chang, J. Patel, C. Cordoba, B. Kaminska, K. Kavanagh
{"title":"Fabrication technology to increase surface area of ionomer membrane material and its application towards high surface area electric double-layer capacitors","authors":"A. Chang, J. Patel, C. Cordoba, B. Kaminska, K. Kavanagh","doi":"10.1117/12.2040273","DOIUrl":null,"url":null,"abstract":"An application friendly technique to increase the surface area of the ionomer membrane such as Aquivion™ has been developed. By utilizing existing micro-fabrication technologies, square pillars were fabricated onto glass and silicon substrates. In combination with a low cost heat press, the glass and silicon stamps were used to successfully hot emboss micro-features onto the ionomer membrane. Consequently, the surface area of the Aquivion™ membrane was drastically increased enabling potential improvement of sensing and energy storage technologies. Preliminary results show successful fabrication of devices with systematic higher surface area and an improved capacitance.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2040273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An application friendly technique to increase the surface area of the ionomer membrane such as Aquivion™ has been developed. By utilizing existing micro-fabrication technologies, square pillars were fabricated onto glass and silicon substrates. In combination with a low cost heat press, the glass and silicon stamps were used to successfully hot emboss micro-features onto the ionomer membrane. Consequently, the surface area of the Aquivion™ membrane was drastically increased enabling potential improvement of sensing and energy storage technologies. Preliminary results show successful fabrication of devices with systematic higher surface area and an improved capacitance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增加离子膜材料表面积的制备技术及其在高比表面积双电层电容器中的应用
一种应用友好的技术来增加离子膜的表面积,如Aquivion™已经开发出来。通过利用现有的微加工技术,方柱被制造到玻璃和硅衬底上。结合低成本热压,玻璃和硅印章成功地将微特征热浮雕到离子膜上。因此,aququivion™膜的表面积大大增加,从而提高了传感和储能技术的潜力。初步结果表明,成功地制造了具有系统更高表面积和改进电容的器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optomechanical cantilever device for displacement sensing and variable attenuator Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography Evaluation of silicon tuning-fork resonators under space-relevant radiation conditions UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments Integration of real-time 3D image acquisition and multiview 3D display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1