An iterative approach for reconstruction of arbitrary sparsely sampled magnetic resonance images

H. Pirsiavash, M. Soleymani, G. Hossein-Zadeh
{"title":"An iterative approach for reconstruction of arbitrary sparsely sampled magnetic resonance images","authors":"H. Pirsiavash, M. Soleymani, G. Hossein-Zadeh","doi":"10.1109/CBMS.2005.27","DOIUrl":null,"url":null,"abstract":"In many fast MR imaging techniques, K-space is sampled sparsely in order to gain a fast traverse of K-space. These techniques use non-Cartesian sampling trajectories like radial, zigzag, and spiral. In the reconstruction procedure, usually interpolation methods are used to obtain missing samples on a regular grid. In this paper, we propose an iterative method for image reconstruction which uses the black marginal area of the image. The proposed iterative solution offers a great enhancement in the quality of the reconstructed image in comparison with conventional algorithms like zero filling and neural network. This method is applied on MRI data and its improved performance over other methods is demonstrated.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In many fast MR imaging techniques, K-space is sampled sparsely in order to gain a fast traverse of K-space. These techniques use non-Cartesian sampling trajectories like radial, zigzag, and spiral. In the reconstruction procedure, usually interpolation methods are used to obtain missing samples on a regular grid. In this paper, we propose an iterative method for image reconstruction which uses the black marginal area of the image. The proposed iterative solution offers a great enhancement in the quality of the reconstructed image in comparison with conventional algorithms like zero filling and neural network. This method is applied on MRI data and its improved performance over other methods is demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
任意稀疏采样磁共振图像的迭代重建方法
在许多快速磁共振成像技术中,为了获得快速遍历k空间,对k空间进行稀疏采样。这些技术使用非笛卡尔采样轨迹,如径向、之字形和螺旋形。在重建过程中,通常采用插值方法在规则网格上获取缺失样本。本文提出了一种利用图像的黑色边缘区域进行图像重建的迭代方法。与传统的零填充和神经网络算法相比,所提出的迭代解在重建图像的质量上有很大的提高。将该方法应用于MRI数据,证明其性能优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov model-based clustering for efficient patient care Incremental learning of ensemble classifiers on ECG data Grid-enabled workflows for data intensive medical applications Case-based tissue classification for monitoring leg ulcer healing Optimisation of neural network training through pre-establishment of synaptic weights applied to body surface mapping classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1