Youness Trachi, E. Elbouchikhi, V. Choqueuse, M. Benbouzid
{"title":"Stator current analysis by subspace methods for fault detection in induction machines","authors":"Youness Trachi, E. Elbouchikhi, V. Choqueuse, M. Benbouzid","doi":"10.1109/IECON.2015.7392639","DOIUrl":null,"url":null,"abstract":"This paper aims to develop a condition monitoring architecture for induction machines, with focus on bearing faults. The main objective of this paper is to identify fault signatures at an early stage by using high-resolution frequency estimation techniques. In particular, we present two subspace methods, which are Root-MUSIC and ESPRIT. Once the frequencies are determined, the amplitude estimation is obtained by using the Least Squares Estimator (LSE). Finally, the amplitude estimation is used to derive a fault severity criterion. The experimental results show that the proposed architecture has the ability to measure the faults severity.","PeriodicalId":190550,"journal":{"name":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2015.7392639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper aims to develop a condition monitoring architecture for induction machines, with focus on bearing faults. The main objective of this paper is to identify fault signatures at an early stage by using high-resolution frequency estimation techniques. In particular, we present two subspace methods, which are Root-MUSIC and ESPRIT. Once the frequencies are determined, the amplitude estimation is obtained by using the Least Squares Estimator (LSE). Finally, the amplitude estimation is used to derive a fault severity criterion. The experimental results show that the proposed architecture has the ability to measure the faults severity.