Interfacial microstructure and shear strength of Sn-Ag-Cu based composite solders on Cu and Au/Ni metallized Cu substrates

Tama Fouzder, Y. Chan, Daniel K. Chan
{"title":"Interfacial microstructure and shear strength of Sn-Ag-Cu based composite solders on Cu and Au/Ni metallized Cu substrates","authors":"Tama Fouzder, Y. Chan, Daniel K. Chan","doi":"10.1109/EPTC.2014.7028281","DOIUrl":null,"url":null,"abstract":"Nano-sized, non-reacting, non-coarsening CeO2 particles with a density close to that of solder alloy were incorporated into Sn-3.0wt%Ag-0.5wt%Cu solder paste. The interfacial microstructure and shear strength of Au/Ni metallized Cu substrates were investigated, as a function of aging time, at various temperatures. After solid state aging at low temperature, an island-shaped Cu6Sn5 intermetallic compound (IMC) layer was found to be adhered at the interfaces of the Cu/Sn-Ag-Cu solder systems. However, after a prolonged aging, a very thin, firmly adhering Cu3Sn IMC layer was observed between the Cu6Sn5 IMC layer and the Cu substrate. On the other hand, a scallop-shaped (Cu, Ni)-Sn IMC layer was found at the interfaces of the Sn-Ag-Cu based solder-Au/Ni metallized Cu substrates. As the solid-state aging time and temperature increase, the thicknesses of the IMC layers also remarkably increased. In the solder ball region of both systems, a fine microstructure of Ag3Sn and Cu6Sn5 IMC particles appeared in the β-Sn matrix. However, the growth behavior of the IMC layers of composite solders doped with CeO2 nanoparticles was inhibited, due to an accumulation of surface-active CeO2 nanoparticles at the grain boundary or in the IMC layers. In addition, the composite solder joints doped with CeO2 nanoparticles had higher shear strengths than that of the plain Sn-Ag-Cu solder joints, due to a well-controlled fine IMC particles and uniformly distributed CeO2 nanoparticles.","PeriodicalId":115713,"journal":{"name":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2014.7028281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nano-sized, non-reacting, non-coarsening CeO2 particles with a density close to that of solder alloy were incorporated into Sn-3.0wt%Ag-0.5wt%Cu solder paste. The interfacial microstructure and shear strength of Au/Ni metallized Cu substrates were investigated, as a function of aging time, at various temperatures. After solid state aging at low temperature, an island-shaped Cu6Sn5 intermetallic compound (IMC) layer was found to be adhered at the interfaces of the Cu/Sn-Ag-Cu solder systems. However, after a prolonged aging, a very thin, firmly adhering Cu3Sn IMC layer was observed between the Cu6Sn5 IMC layer and the Cu substrate. On the other hand, a scallop-shaped (Cu, Ni)-Sn IMC layer was found at the interfaces of the Sn-Ag-Cu based solder-Au/Ni metallized Cu substrates. As the solid-state aging time and temperature increase, the thicknesses of the IMC layers also remarkably increased. In the solder ball region of both systems, a fine microstructure of Ag3Sn and Cu6Sn5 IMC particles appeared in the β-Sn matrix. However, the growth behavior of the IMC layers of composite solders doped with CeO2 nanoparticles was inhibited, due to an accumulation of surface-active CeO2 nanoparticles at the grain boundary or in the IMC layers. In addition, the composite solder joints doped with CeO2 nanoparticles had higher shear strengths than that of the plain Sn-Ag-Cu solder joints, due to a well-controlled fine IMC particles and uniformly distributed CeO2 nanoparticles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cu和Au/Ni金属化Cu衬底上Sn-Ag-Cu基复合钎料的界面微观结构和抗剪强度
在Sn-3.0wt%Ag-0.5wt%Cu的锡膏中加入了密度接近焊料合金的纳米级、不反应、不粗化的CeO2颗粒。研究了不同温度下Au/Ni金属化Cu基体的界面微观结构和抗剪强度随时效时间的变化规律。经低温固相时效处理后,Cu/Sn-Ag-Cu钎料体系界面处形成了岛状Cu6Sn5金属间化合物(IMC)层。然而,经过长时间时效后,在Cu6Sn5 IMC层与Cu衬底之间形成了一层非常薄且粘附牢固的Cu3Sn IMC层。另一方面,在Sn-Ag-Cu基钎料- au /Ni金属化Cu衬底的界面上发现了扇形(Cu, Ni)-Sn IMC层。随着固态时效时间和温度的增加,IMC层的厚度也显著增加。在两种体系的钎料球区,β-Sn基体中均出现Ag3Sn和Cu6Sn5 IMC颗粒的微观结构。然而,由于表面活性的CeO2纳米颗粒在晶界或IMC层中积累,掺杂CeO2纳米颗粒的复合钎料的IMC层的生长行为受到抑制。此外,掺杂CeO2纳米粒子的复合焊点由于具有良好的IMC颗粒控制和CeO2纳米粒子的均匀分布,具有比普通Sn-Ag-Cu焊点更高的剪切强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of the height of Carbon Nanotubes on hot switching of Au/Cr-Au/MWCNT contact pairs Laminating thin glass onto glass carrier to eliminate grinding and bonding process for glass interposer A robust chip capacitor for video band width in RF power amplifiers Chip scale package with low cost substrate evaluation and characterization Methodology for more accurate assessment of heat loss in microchannel flow boiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1