{"title":"Reinforcement learning with average cost for adaptive control of traffic lights at intersections","authors":"A. PrashanthL., S. Bhatnagar","doi":"10.1109/ITSC.2011.6082823","DOIUrl":null,"url":null,"abstract":"We propose for the first time two reinforcement learning algorithms with function approximation for average cost adaptive control of traffic lights. One of these algorithms is a version of Q-learning with function approximation while the other is a policy gradient actor-critic algorithm that incorporates multi-timescale stochastic approximation. We show performance comparisons on various network settings of these algorithms with a range of fixed timing algorithms, as well as a Q-learning algorithm with full state representation that we also implement. We observe that whereas (as expected) on a two-junction corridor, the full state representation algorithm shows the best results, this algorithm is not implementable on larger road networks. The algorithm PG-AC-TLC that we propose is seen to show the best overall performance.","PeriodicalId":186596,"journal":{"name":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2011.6082823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64
Abstract
We propose for the first time two reinforcement learning algorithms with function approximation for average cost adaptive control of traffic lights. One of these algorithms is a version of Q-learning with function approximation while the other is a policy gradient actor-critic algorithm that incorporates multi-timescale stochastic approximation. We show performance comparisons on various network settings of these algorithms with a range of fixed timing algorithms, as well as a Q-learning algorithm with full state representation that we also implement. We observe that whereas (as expected) on a two-junction corridor, the full state representation algorithm shows the best results, this algorithm is not implementable on larger road networks. The algorithm PG-AC-TLC that we propose is seen to show the best overall performance.