A. Nobori, Naofumi Kobayashi, H. Kuwae, T. Kasahara, J. Oshima, C. Adachi, S. Shoji, J. Mizuno
{"title":"Flexible organic light emitting diode ribbons using three liquid organic semiconductors","authors":"A. Nobori, Naofumi Kobayashi, H. Kuwae, T. Kasahara, J. Oshima, C. Adachi, S. Shoji, J. Mizuno","doi":"10.1109/NEMS.2016.7758195","DOIUrl":null,"url":null,"abstract":"We propose ribbon type flexible organic light emitting diodes (OLEDs), which can be integrated into textiles, using liquid organic semiconductors (LOSs). A linear flexible microchannel, which consists of a liquid light-emitting layer with LOS sandwiched between two indium tin oxide (ITO) electrodes, was fabricated with photolithography and heterogeneous bonding. LOSs were injected into the SU-8-based linear microchannels of 70 mm in length. Three different colors of photoluminescence (PL) emission were observed from flexible linear microchannels. Liner electroluminescence (EL) emission was successfully obtained in a bending state as well as straight state. We expect that the proposed microfluidic OLED ribbons will have high potential for future free-formable wearable devices such as electronic textiles.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We propose ribbon type flexible organic light emitting diodes (OLEDs), which can be integrated into textiles, using liquid organic semiconductors (LOSs). A linear flexible microchannel, which consists of a liquid light-emitting layer with LOS sandwiched between two indium tin oxide (ITO) electrodes, was fabricated with photolithography and heterogeneous bonding. LOSs were injected into the SU-8-based linear microchannels of 70 mm in length. Three different colors of photoluminescence (PL) emission were observed from flexible linear microchannels. Liner electroluminescence (EL) emission was successfully obtained in a bending state as well as straight state. We expect that the proposed microfluidic OLED ribbons will have high potential for future free-formable wearable devices such as electronic textiles.