vnNLI - VLSP 2021: Vietnamese and English-Vietnamese Textual Entailment Based on Pre-trained Multilingual Language Models

Ngan Nguyen Luu Thuy, Đặng Văn Thìn, Hoàng Xuân Vũ, Nguyễn Văn Tài, Khoa Thi-Kim Phan
{"title":"vnNLI - VLSP 2021: Vietnamese and English-Vietnamese Textual Entailment Based on Pre-trained Multilingual Language Models","authors":"Ngan Nguyen Luu Thuy, Đặng Văn Thìn, Hoàng Xuân Vũ, Nguyễn Văn Tài, Khoa Thi-Kim Phan","doi":"10.25073/2588-1086/vnucsce.329","DOIUrl":null,"url":null,"abstract":"Natural Language Inference (NLI) is a high-level semantic task in Natural Language Processing - NLP, and it extends further challenges if it is in the cross-lingual scenario. In recent years, pre-trained multilingual language models (e.g., mBERT ,XLM-R, InfoXLM) have greatly contributed to the success of dealing with these challenges. Based on the motivation behind these achievements, this paper describes our approach based on fine-tuning pretrained multilingual language models (XLM-R, InfoXLM) to tackle the shared task ``Vietnamese and English\\-Vietnamese Textual Entailment'' at the 8th International Workshop on Vietnamese Language and Speech Processing (VLSP 2021\\footnote{https://vlsp.org.vn/vlsp2021}). We investigate other techniques to improve the performance of our work: Cross-validation, Pseudo-labeling (PL), Learning rate adjustment, and Postagging. All experimental results demonstrated that our approach based on the InfoXLM model achieved competitive results, ranking 2nd for the task evaluation in VLSP 2021 with 0.89 in terms of F1-score on the private test set.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Natural Language Inference (NLI) is a high-level semantic task in Natural Language Processing - NLP, and it extends further challenges if it is in the cross-lingual scenario. In recent years, pre-trained multilingual language models (e.g., mBERT ,XLM-R, InfoXLM) have greatly contributed to the success of dealing with these challenges. Based on the motivation behind these achievements, this paper describes our approach based on fine-tuning pretrained multilingual language models (XLM-R, InfoXLM) to tackle the shared task ``Vietnamese and English\-Vietnamese Textual Entailment'' at the 8th International Workshop on Vietnamese Language and Speech Processing (VLSP 2021\footnote{https://vlsp.org.vn/vlsp2021}). We investigate other techniques to improve the performance of our work: Cross-validation, Pseudo-labeling (PL), Learning rate adjustment, and Postagging. All experimental results demonstrated that our approach based on the InfoXLM model achieved competitive results, ranking 2nd for the task evaluation in VLSP 2021 with 0.89 in terms of F1-score on the private test set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
vnli - VLSP 2021:基于预训练多语言模型的越南语和英越语文本蕴涵
自然语言推理(NLI)是自然语言处理(NLP)中的高级语义任务,如果是在跨语言场景中,它将进一步扩展挑战。近年来,预训练的多语言模型(例如,mBERT、XLM-R、InfoXLM)为成功应对这些挑战做出了巨大贡献。基于这些成就背后的动机,本文描述了我们在第八届越南语言和语音处理国际研讨会(VLSP 2021 \footnote{https://vlsp.org.vn/vlsp2021})上基于微调预训练的多语言语言模型(XLM-R, InfoXLM)来解决共享任务“越南语和英语/越南语文本蕴因”的方法。我们研究了其他技术来提高我们的工作性能:交叉验证,伪标记(PL),学习率调整和Postagging。所有实验结果都表明,我们基于InfoXLM模型的方法取得了有竞争力的结果,在VLSP 2021中以0.89的F1-score在私有测试集中排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aspect-Category based Sentiment Analysis with Unified Sequence-To-Sequence Transfer Transformers A Bandwidth-Efficient High-Performance RTL-Microarchitecture of 2D-Convolution for Deep Neural Networks Noisy-label propagation for Video Anomaly Detection with Graph Transformer Network FRSL: A Domain Specific Language to Specify Functional Requirements A Contract-Based Specification Method for Model Transformations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1