A 189x600 Back-Illuminated Stacked SPAD Direct Time-of-Flight Depth Sensor for Automotive LiDAR Systems

O. Kumagai, Junichi Ohmachi, M. Matsumura, Shinichiro Yagi, Kenichi Tayu, Keitaro Amagawa, T. Matsukawa, O. Ozawa, Daisuke Hirono, Y. Shinozuka, Ryutaro Homma, K. Mahara, Toshio Ohyama, Yousuke Morita, Shohei Shimada, T. Ueno, A. Matsumoto, Y. Otake, T. Wakano, Takashi Izawa
{"title":"A 189x600 Back-Illuminated Stacked SPAD Direct Time-of-Flight Depth Sensor for Automotive LiDAR Systems","authors":"O. Kumagai, Junichi Ohmachi, M. Matsumura, Shinichiro Yagi, Kenichi Tayu, Keitaro Amagawa, T. Matsukawa, O. Ozawa, Daisuke Hirono, Y. Shinozuka, Ryutaro Homma, K. Mahara, Toshio Ohyama, Yousuke Morita, Shohei Shimada, T. Ueno, A. Matsumoto, Y. Otake, T. Wakano, Takashi Izawa","doi":"10.1109/ISSCC42613.2021.9365961","DOIUrl":null,"url":null,"abstract":"There have been many developments in Light Detection And Ranging (LiDAR) sensors used in Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADAS) to measure the precise distance to an object, recognize the shape of an intersection, and classify road types. These LiDAR sensors can achieve fantastic results day and night without any loss of performance. In the past, Time-Correlated Single Photon Counting (TCSPC) and complete digital signal processing (DSP) have been used in to achieve a 100m range Time-of-Flight (ToF) sensor [1]. Background (BG) noise-rejection techniques [2] have been used to improve the signal-to-noise ratio (SNR), leading to detection of objects at a 6km range. Single Photon Avalanche Diode (SPAD)-based architectures implement per-pixel level histogramming, Time-to-Digital Conversion (TDC) and signal processing [3], [4]. Another ToF sensor has been shown that enables significantly higher resolution, $1200 \\times 900$ pixels [5]. With the emerging need for a highresolution solid-state LiDAR using a scanning 2D-SPAD array [6], we report a SPAD direct Time-of-Flight (dToF) depth sensor [1] –[5] to realize long-distance 300m range and high resolution over an automotive-grade temperature range of -40 to $125 ^{\\circ}{C}$. This microelectromechanical systems (MEMS)-based SPAD LiDAR can measure over ranges up to 150m with 0.1% accuracy for a 10%-reflectivity target and 200m with 0.1% accuracy for a 95%-reflectivity target. This paper presents a back-illuminated stacked SPAD dToF depth sensor deployed with passive quenching and recharge (PQR) frontend circuitry, TCSPC, and on-chip DSP. Under 117klux sunlight conditions, the MEMS-based SPAD LiDAR measures distances up to 200m with $168 \\times 63$ resolution at 20 frames/s.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

There have been many developments in Light Detection And Ranging (LiDAR) sensors used in Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADAS) to measure the precise distance to an object, recognize the shape of an intersection, and classify road types. These LiDAR sensors can achieve fantastic results day and night without any loss of performance. In the past, Time-Correlated Single Photon Counting (TCSPC) and complete digital signal processing (DSP) have been used in to achieve a 100m range Time-of-Flight (ToF) sensor [1]. Background (BG) noise-rejection techniques [2] have been used to improve the signal-to-noise ratio (SNR), leading to detection of objects at a 6km range. Single Photon Avalanche Diode (SPAD)-based architectures implement per-pixel level histogramming, Time-to-Digital Conversion (TDC) and signal processing [3], [4]. Another ToF sensor has been shown that enables significantly higher resolution, $1200 \times 900$ pixels [5]. With the emerging need for a highresolution solid-state LiDAR using a scanning 2D-SPAD array [6], we report a SPAD direct Time-of-Flight (dToF) depth sensor [1] –[5] to realize long-distance 300m range and high resolution over an automotive-grade temperature range of -40 to $125 ^{\circ}{C}$. This microelectromechanical systems (MEMS)-based SPAD LiDAR can measure over ranges up to 150m with 0.1% accuracy for a 10%-reflectivity target and 200m with 0.1% accuracy for a 95%-reflectivity target. This paper presents a back-illuminated stacked SPAD dToF depth sensor deployed with passive quenching and recharge (PQR) frontend circuitry, TCSPC, and on-chip DSP. Under 117klux sunlight conditions, the MEMS-based SPAD LiDAR measures distances up to 200m with $168 \times 63$ resolution at 20 frames/s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于汽车激光雷达系统的189x600背光堆叠SPAD直接飞行时间深度传感器
在自动驾驶(AD)和高级驾驶辅助系统(ADAS)中使用的光探测和测距(LiDAR)传感器已经取得了许多进展,可以测量到物体的精确距离,识别十字路口的形状,并对道路类型进行分类。这些激光雷达传感器可以在没有任何性能损失的情况下昼夜取得出色的结果。在过去,时间相关单光子计数(TCSPC)和完全数字信号处理(DSP)已被用于实现100米范围的飞行时间(ToF)传感器[1]。背景(BG)噪声抑制技术[2]已被用于提高信噪比(SNR),从而在6km范围内检测到目标。基于单光子雪崩二极管(SPAD)的架构实现了逐像素级直方图、时间-数字转换(TDC)和信号处理[3],[4]。另一种ToF传感器已被证明可以实现显着更高的分辨率,$1200 \ × 900$像素[5]。随着对使用扫描2D-SPAD阵列的高分辨率固态激光雷达的需求日益增加[6],我们报告了一种SPAD直接飞行时间(dof)深度传感器[1]-[5],可在-40至125美元的汽车级温度范围内实现远距离300米范围和高分辨率。这种基于微机电系统(MEMS)的SPAD激光雷达可以在150米范围内以0.1%的精度测量10%反射率的目标,在200米范围内以0.1%的精度测量95%反射率的目标。本文介绍了一种背光源堆叠式SPAD dof深度传感器,该传感器采用被动淬火和充电(PQR)前端电路、TCSPC和片上DSP。在117klux的阳光条件下,基于mems的SPAD激光雷达以20帧/秒的速度以168 × 63美元的分辨率测量距离达200米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10.6 A 12b 16GS/s RF-Sampling Capacitive DAC for Multi-Band Soft-Radio Base-Station Applications with On-Chip Transmission-Line Matching Network in 16nm FinFET A 0.021mm2 PVT-Aware Digital-Flow-Compatible Adaptive Back-Biasing Regulator with Scalable Drivers Achieving 450% Frequency Boosting and 30% Power Reduction in 22nm FDSOI Technology 8.1 A 224Gb/s DAC-Based PAM-4 Transmitter with 8-Tap FFE in 10nm CMOS 14.7 An Adaptive Analog Temperature-Healing Low-Power 17.7-to-19.2GHz RX Front-End with ±0.005dB/°C Gain Variation, <1.6dB NF Variation, and <2.2dB IP1dB Variation across -15 to 85°C for Phased-Array Receiver ISSCC 2021 Index to Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1