Twist Bytes - German Dialect Identification with Data Mining Optimization

F. Souza, Ralf Grubenmann, Pius von Däniken, Dirk Von Gruenigen, Jan Deriu, Mark Cieliebak
{"title":"Twist Bytes - German Dialect Identification with Data Mining Optimization","authors":"F. Souza, Ralf Grubenmann, Pius von Däniken, Dirk Von Gruenigen, Jan Deriu, Mark Cieliebak","doi":"10.21256/ZHAW-4850","DOIUrl":null,"url":null,"abstract":"We describe our approaches used in the German Dialect Identification (GDI) task at the VarDial Evaluation Campaign 2018. The goal was to identify to which out of four dialects spoken in German speaking part of Switzerland a sentence belonged to. We adopted two different meta classifier approaches and used some data mining insights to improve the preprocessing and the meta classifier parameters. Especially, we focused on using different feature extraction methods and how to combine them, since they influenced very differently the performance of the system. Our system achieved second place out of 8 teams, with a macro averaged F-1 of 64.6%.","PeriodicalId":431809,"journal":{"name":"VarDial@COLING 2018","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VarDial@COLING 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21256/ZHAW-4850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We describe our approaches used in the German Dialect Identification (GDI) task at the VarDial Evaluation Campaign 2018. The goal was to identify to which out of four dialects spoken in German speaking part of Switzerland a sentence belonged to. We adopted two different meta classifier approaches and used some data mining insights to improve the preprocessing and the meta classifier parameters. Especially, we focused on using different feature extraction methods and how to combine them, since they influenced very differently the performance of the system. Our system achieved second place out of 8 teams, with a macro averaged F-1 of 64.6%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扭曲字节-德语方言识别与数据挖掘优化
我们描述了我们在2018年VarDial评估活动中用于德语方言识别(GDI)任务的方法。目标是在瑞士德语区的四种方言中识别出一个句子属于哪一种。我们采用了两种不同的元分类器方法,并利用一些数据挖掘的见解来改进预处理和元分类器参数。由于不同的特征提取方法对系统性能的影响非常不同,我们特别关注了不同特征提取方法的使用以及如何将它们结合起来。我们的系统在8支队伍中排名第二,宏观平均F-1为64.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Encoder-Decoder Methods for Text Normalization Twist Bytes - German Dialect Identification with Data Mining Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1