首页 > 最新文献

VarDial@COLING 2018最新文献

英文 中文
Encoder-Decoder Methods for Text Normalization 文本规范化的编码器-解码器方法
Pub Date : 2018-08-20 DOI: 10.5167/UZH-156775
M. Lusetti, T. Ruzsics, A. Göhring, T. Samardžić, E. Stark
Text normalization is the task of mapping non-canonical language, typical of speech transcription and computer-mediated communication, to a standardized writing. It is an up-stream task necessary to enable the subsequent direct employment of standard natural language processing tools and indispensable for languages such as Swiss German, with strong regional variation and no written standard. Text normalization has been addressed with a variety of methods, most successfully with character-level statistical machine translation (CSMT). In the meantime, machine translation has changed and the new methods, known as neural encoder-decoder (ED) models, resulted in remarkable improvements. Text normalization, however, has not yet followed. A number of neural methods have been tried, but CSMT remains the state-of-the-art. In this work, we normalize Swiss German WhatsApp messages using the ED framework. We exploit the flexibility of this framework, which allows us to learn from the same training data in different ways. In particular, we modify the decoding stage of a plain ED model to include target-side language models operating at different levels of granularity: characters and words. Our systematic comparison shows that our approach results in an improvement over the CSMT state-of-the-art.
文本规范化是将非规范语言(典型的语音转录和计算机媒介通信)映射到标准化写作的任务。这是一项上游任务,必须使后续直接使用标准的自然语言处理工具,对于瑞士德语等语言来说是必不可少的,这些语言具有很强的地区差异,没有书面标准。文本规范化已经通过各种方法得到解决,最成功的是字符级统计机器翻译(CSMT)。与此同时,机器翻译也发生了变化,被称为神经编码器-解码器(ED)模型的新方法取得了显著的进步。然而,文本规范化还没有出现。已经尝试了许多神经方法,但CSMT仍然是最先进的。在这项工作中,我们使用ED框架规范化瑞士德语WhatsApp消息。我们利用了这个框架的灵活性,它允许我们以不同的方式从相同的训练数据中学习。特别是,我们修改了普通ED模型的解码阶段,以包括在不同粒度级别(字符和单词)上操作的目标端语言模型。我们的系统比较表明,我们的方法比CSMT的最新技术有了改进。
{"title":"Encoder-Decoder Methods for Text Normalization","authors":"M. Lusetti, T. Ruzsics, A. Göhring, T. Samardžić, E. Stark","doi":"10.5167/UZH-156775","DOIUrl":"https://doi.org/10.5167/UZH-156775","url":null,"abstract":"Text normalization is the task of mapping non-canonical language, typical of speech transcription and computer-mediated communication, to a standardized writing. It is an up-stream task necessary to enable the subsequent direct employment of standard natural language processing tools and indispensable for languages such as Swiss German, with strong regional variation and no written standard. Text normalization has been addressed with a variety of methods, most successfully with character-level statistical machine translation (CSMT). In the meantime, machine translation has changed and the new methods, known as neural encoder-decoder (ED) models, resulted in remarkable improvements. Text normalization, however, has not yet followed. A number of neural methods have been tried, but CSMT remains the state-of-the-art. In this work, we normalize Swiss German WhatsApp messages using the ED framework. We exploit the flexibility of this framework, which allows us to learn from the same training data in different ways. In particular, we modify the decoding stage of a plain ED model to include target-side language models operating at different levels of granularity: characters and words. Our systematic comparison shows that our approach results in an improvement over the CSMT state-of-the-art.","PeriodicalId":431809,"journal":{"name":"VarDial@COLING 2018","volume":"120 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123231151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 38
Twist Bytes - German Dialect Identification with Data Mining Optimization 扭曲字节-德语方言识别与数据挖掘优化
Pub Date : 2018-08-01 DOI: 10.21256/ZHAW-4850
F. Souza, Ralf Grubenmann, Pius von Däniken, Dirk Von Gruenigen, Jan Deriu, Mark Cieliebak
We describe our approaches used in the German Dialect Identification (GDI) task at the VarDial Evaluation Campaign 2018. The goal was to identify to which out of four dialects spoken in German speaking part of Switzerland a sentence belonged to. We adopted two different meta classifier approaches and used some data mining insights to improve the preprocessing and the meta classifier parameters. Especially, we focused on using different feature extraction methods and how to combine them, since they influenced very differently the performance of the system. Our system achieved second place out of 8 teams, with a macro averaged F-1 of 64.6%.
我们描述了我们在2018年VarDial评估活动中用于德语方言识别(GDI)任务的方法。目标是在瑞士德语区的四种方言中识别出一个句子属于哪一种。我们采用了两种不同的元分类器方法,并利用一些数据挖掘的见解来改进预处理和元分类器参数。由于不同的特征提取方法对系统性能的影响非常不同,我们特别关注了不同特征提取方法的使用以及如何将它们结合起来。我们的系统在8支队伍中排名第二,宏观平均F-1为64.6%。
{"title":"Twist Bytes - German Dialect Identification with Data Mining Optimization","authors":"F. Souza, Ralf Grubenmann, Pius von Däniken, Dirk Von Gruenigen, Jan Deriu, Mark Cieliebak","doi":"10.21256/ZHAW-4850","DOIUrl":"https://doi.org/10.21256/ZHAW-4850","url":null,"abstract":"We describe our approaches used in the German Dialect Identification (GDI) task at the VarDial Evaluation Campaign 2018. The goal was to identify to which out of four dialects spoken in German speaking part of Switzerland a sentence belonged to. We adopted two different meta classifier approaches and used some data mining insights to improve the preprocessing and the meta classifier parameters. Especially, we focused on using different feature extraction methods and how to combine them, since they influenced very differently the performance of the system. Our system achieved second place out of 8 teams, with a macro averaged F-1 of 64.6%.","PeriodicalId":431809,"journal":{"name":"VarDial@COLING 2018","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124472199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
VarDial@COLING 2018
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1