{"title":"Increasing multiprocessor lifetime by Youngest-First Round-Robin core gating patterns","authors":"A. Simevski, R. Kraemer, M. Krstic","doi":"10.1109/AHS.2014.6880182","DOIUrl":null,"url":null,"abstract":"Long-mission multiprocessor systems in which direct human intervention is impossible, like satellites in space, require special attention of their lifetime reliability. Relying on the well established power reduction techniques which are frequently used in multiprocessors - power and clock gating, as well as dynamic voltage and frequency scaling, we devise the Youngest-First Round-Robin (YFRR) core gating pattern to be used for reduction of aging effects i.e., lifetime extension of the system. The YFRR technique uses the information supplied by on-chip aging monitors placed in each multiprocessor core, in order to determine their relative age and construct the gating pattern. Furthermore, we introduce a simple analytical method based on theWeibul distribution in order to evaluate and estimate the lifetime reliability of multiprocessors that use core gating patterns. The analyses show an improvement of up to 32% when using the YFRR compared to a simple Round-Robin.","PeriodicalId":428581,"journal":{"name":"2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2014.6880182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Long-mission multiprocessor systems in which direct human intervention is impossible, like satellites in space, require special attention of their lifetime reliability. Relying on the well established power reduction techniques which are frequently used in multiprocessors - power and clock gating, as well as dynamic voltage and frequency scaling, we devise the Youngest-First Round-Robin (YFRR) core gating pattern to be used for reduction of aging effects i.e., lifetime extension of the system. The YFRR technique uses the information supplied by on-chip aging monitors placed in each multiprocessor core, in order to determine their relative age and construct the gating pattern. Furthermore, we introduce a simple analytical method based on theWeibul distribution in order to evaluate and estimate the lifetime reliability of multiprocessors that use core gating patterns. The analyses show an improvement of up to 32% when using the YFRR compared to a simple Round-Robin.