A. Parretta, A. Antonini, M. Stefancich, V. Franceschini, G. Martinelli, M. Armani
{"title":"Characterization of CPC solar concentrators by a laser method","authors":"A. Parretta, A. Antonini, M. Stefancich, V. Franceschini, G. Martinelli, M. Armani","doi":"10.1117/12.733925","DOIUrl":null,"url":null,"abstract":"In this paper we present a method of optical characterization of solar concentrators based on the use of a laser beam. The method, even though constrained by lengthy measurements, gives nevertheless interesting information on local mirror surface defects or manufacturing defects, like internal wall shape inaccuracies. It was applied to 3D-CPC-like concentrators and the measurements were supported by optical simulations with commercial codes. The method, simple to apply, requires just a laser to scan the CPC input aperture following a matrix-like path, at a controlled orientation of the beam. Maps of optical efficiency as function of the laser beam incidence angle are obtained by matching the CPC exit aperture with a photodetector with an efficient light trapping. The integration of each map gives the CPC efficiency resolved in angle of incidence, so curves of optical transmission (efficiency) as function of incidence angle can be drawn and the acceptance angle measured. The analysis of the single maps allows to obtain interesting information on light collection by the different regions of CPC input area. It reveals, moreover, how the efficiency of light collection depends on several factors like surface reflectivity, number of reflections of the single beam, local angle of incidence, local surface defects, and so on. By comparing the theoretical analysis with the experimental results, it is possible to emphasize the effects directly related to manufacturing defects.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.733925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
In this paper we present a method of optical characterization of solar concentrators based on the use of a laser beam. The method, even though constrained by lengthy measurements, gives nevertheless interesting information on local mirror surface defects or manufacturing defects, like internal wall shape inaccuracies. It was applied to 3D-CPC-like concentrators and the measurements were supported by optical simulations with commercial codes. The method, simple to apply, requires just a laser to scan the CPC input aperture following a matrix-like path, at a controlled orientation of the beam. Maps of optical efficiency as function of the laser beam incidence angle are obtained by matching the CPC exit aperture with a photodetector with an efficient light trapping. The integration of each map gives the CPC efficiency resolved in angle of incidence, so curves of optical transmission (efficiency) as function of incidence angle can be drawn and the acceptance angle measured. The analysis of the single maps allows to obtain interesting information on light collection by the different regions of CPC input area. It reveals, moreover, how the efficiency of light collection depends on several factors like surface reflectivity, number of reflections of the single beam, local angle of incidence, local surface defects, and so on. By comparing the theoretical analysis with the experimental results, it is possible to emphasize the effects directly related to manufacturing defects.