TýrFS: Increasing Small Files Access Performance with Dynamic Metadata Replication

Pierre Matri, María S. Pérez, Alexandru Costan, Gabriel Antoniu
{"title":"TýrFS: Increasing Small Files Access Performance with Dynamic Metadata Replication","authors":"Pierre Matri, María S. Pérez, Alexandru Costan, Gabriel Antoniu","doi":"10.1109/CCGRID.2018.00072","DOIUrl":null,"url":null,"abstract":"Small files are known to pose major performance challenges for file systems. Yet, such workloads are increasingly common in a number of Big Data Analytics workflows or large-scale HPC simulations. These challenges are mainly caused by the common architecture of most state-of-the-art file systems needing one or multiple metadata requests before being able to read from a file. Small input file size causes the overhead of this metadata management to gain relative importance as the size of each file decreases. In this paper we propose a set of techniques leveraging consistent hashing and dynamic metadata replication to significantly reduce this metadata overhead. We implement such techniques inside a new file system named TýrFS, built as a thin layer above the Týr object store. We prove that TýrFS increases small file access performance up to one order of magnitude compared to other state-of-the-art file systems, while only causing a minimal impact on file write throughput.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Small files are known to pose major performance challenges for file systems. Yet, such workloads are increasingly common in a number of Big Data Analytics workflows or large-scale HPC simulations. These challenges are mainly caused by the common architecture of most state-of-the-art file systems needing one or multiple metadata requests before being able to read from a file. Small input file size causes the overhead of this metadata management to gain relative importance as the size of each file decreases. In this paper we propose a set of techniques leveraging consistent hashing and dynamic metadata replication to significantly reduce this metadata overhead. We implement such techniques inside a new file system named TýrFS, built as a thin layer above the Týr object store. We prove that TýrFS increases small file access performance up to one order of magnitude compared to other state-of-the-art file systems, while only causing a minimal impact on file write throughput.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TýrFS:通过动态元数据复制提高小文件访问性能
众所周知,小文件给文件系统带来了主要的性能挑战。然而,这种工作负载在许多大数据分析工作流程或大规模HPC模拟中越来越普遍。这些挑战主要是由于大多数最先进的文件系统的公共体系结构在能够从文件中读取之前需要一个或多个元数据请求。较小的输入文件大小导致元数据管理的开销随着每个文件大小的减小而变得相对重要。在本文中,我们提出了一组利用一致散列和动态元数据复制的技术,以显著减少元数据开销。我们在名为TýrFS的新文件系统中实现这些技术,该文件系统构建为Týr对象存储之上的瘦层。我们证明,与其他最先进的文件系统相比,TýrFS将小文件访问性能提高了一个数量级,同时只对文件写吞吐量造成最小的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1