A Deconvolution Method for Impulsive Signals using Neural-Networks

E. Molino-Minero-Re, M. Lopez-Garcia, A. Manuel-Lazaro, J. del-Rio-Fernandez
{"title":"A Deconvolution Method for Impulsive Signals using Neural-Networks","authors":"E. Molino-Minero-Re, M. Lopez-Garcia, A. Manuel-Lazaro, J. del-Rio-Fernandez","doi":"10.1109/ISIE.2006.295521","DOIUrl":null,"url":null,"abstract":"This work describes a proposal method for impulsive signal deconvolution. The method uses a simple one-layer neural-network configured for implementing an adaptive filter that models the unknown inverse impulse response of the propagation media. The Levenberg-Marquardt (LM) algorithm is used for finding the coefficients of the neural-network. The method has been tested on simulated channels, and on a mathematical model from a real cantilever beam. Results show that with proper training deconvolution can be achieved","PeriodicalId":296467,"journal":{"name":"2006 IEEE International Symposium on Industrial Electronics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2006.295521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work describes a proposal method for impulsive signal deconvolution. The method uses a simple one-layer neural-network configured for implementing an adaptive filter that models the unknown inverse impulse response of the propagation media. The Levenberg-Marquardt (LM) algorithm is used for finding the coefficients of the neural-network. The method has been tested on simulated channels, and on a mathematical model from a real cantilever beam. Results show that with proper training deconvolution can be achieved
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的脉冲信号反卷积方法
本文介绍了一种脉冲信号反褶积的建议方法。该方法使用一个简单的单层神经网络来实现一个自适应滤波器,该滤波器对传播介质的未知逆脉冲响应进行建模。利用Levenberg-Marquardt (LM)算法求解神经网络的系数。该方法已在模拟通道和实际悬臂梁的数学模型上进行了测试。结果表明,通过适当的训练,可以实现反卷积
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Industrial Smart Transmitters Modeling for PC-based Instruments Development Platform Analysis of the Sound Field Emitted by a Doubly Salient Switched Reluctance Motor Using Acoustic Intensity Measurement Effects of SSSC on Distance Relay Tripping Characteristic Real-Time Simulation of Permanent Magnet Motor Drive on FPGA Chip for High-Bandwidth Controller Tests and Validation Fault Diagnosis On Power Transformers Using Non-electric Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1