Reconstruction of Biological Networks by Supervised Machine Learning Approaches

Jean-Philippe Vert
{"title":"Reconstruction of Biological Networks by Supervised Machine Learning Approaches","authors":"Jean-Philippe Vert","doi":"10.1002/9780470556757.CH7","DOIUrl":null,"url":null,"abstract":"We review a recent trend in computational systems biology which aims at using pattern recognition algorithms to infer the structure of large-scale biological networks from heterogeneous genomic data. We present several strategies that have been proposed and that lead to different pattern recognition problems and algorithms. The strenght of these approaches is illustrated on the reconstruction of metabolic, protein-protein and regulatory networks of model organisms. In all cases, state-of-the-art performance is reported.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470556757.CH7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

We review a recent trend in computational systems biology which aims at using pattern recognition algorithms to infer the structure of large-scale biological networks from heterogeneous genomic data. We present several strategies that have been proposed and that lead to different pattern recognition problems and algorithms. The strenght of these approaches is illustrated on the reconstruction of metabolic, protein-protein and regulatory networks of model organisms. In all cases, state-of-the-art performance is reported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于监督机器学习方法的生物网络重构
我们回顾了计算系统生物学的最新趋势,该趋势旨在使用模式识别算法从异构基因组数据中推断大规模生物网络的结构。我们提出了几种策略,这些策略导致了不同的模式识别问题和算法。这些方法的力量在模式生物的代谢,蛋白质-蛋白质和调节网络的重建上得到了说明。在所有情况下,报告了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beating temporal phase sensitivity limit in off-axis interferometry based quantitative phase microscopy A review of mass concentrations of Bramblings Fringilla montifringilla: implications for assessment of large numbers of birds Spatial Registration Evaluation of [18F]-MK6240 PET Comparison of surface thermal patterns of horses and donkeys in IRT images Utilization of 3D segmentation for measurement of pediatric brain tumor outcomes after treatment: review of available tools, step-by-step instructions, and applications to clinical practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1