A partially saturated nonlinear controller for overhead cranes with experimental implementation

Ning Sun, Yongchun Fang
{"title":"A partially saturated nonlinear controller for overhead cranes with experimental implementation","authors":"Ning Sun, Yongchun Fang","doi":"10.1109/ICRA.2013.6631212","DOIUrl":null,"url":null,"abstract":"The present paper exploits a partially saturated nonlinear control law for underactuated crane systems, which is achieved by converting the crane model into an objective (or equivalently, desired closed-loop) system. The proposed method guarantees “soft” trolley start by incorporating a smooth saturated function into the control law. More specifically, we first establish an objective system with guaranteed signal convergence and stability performance; then based on the structure of the objective dynamics, a partially saturated control law is derived straightforwardly by solving one partial differential equation, without performing any partial feedback linearization operations on the original crane model. The convergence and stability performance of the objective (i.e., closed-loop) system is guaranteed with Lyapunov techniques and LaSalle's invariance theorem. To validate the practical performance of the proposed method, we implement hardware experiments to illustrate that the new method achieves superior performance with reduced control efforts.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"23 Suppl 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6631212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The present paper exploits a partially saturated nonlinear control law for underactuated crane systems, which is achieved by converting the crane model into an objective (or equivalently, desired closed-loop) system. The proposed method guarantees “soft” trolley start by incorporating a smooth saturated function into the control law. More specifically, we first establish an objective system with guaranteed signal convergence and stability performance; then based on the structure of the objective dynamics, a partially saturated control law is derived straightforwardly by solving one partial differential equation, without performing any partial feedback linearization operations on the original crane model. The convergence and stability performance of the objective (i.e., closed-loop) system is guaranteed with Lyapunov techniques and LaSalle's invariance theorem. To validate the practical performance of the proposed method, we implement hardware experiments to illustrate that the new method achieves superior performance with reduced control efforts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
桥式起重机部分饱和非线性控制器及实验实现
本文利用欠驱动起重机系统的部分饱和非线性控制律,通过将起重机模型转换为目标(或等效的,期望的闭环)系统来实现。该方法通过在控制律中引入光滑饱和函数来保证小车的“软”启动。具体来说,我们首先建立一个具有保证信号收敛和稳定性能的目标系统;然后根据目标动力学结构,无需对原起重机模型进行部分反馈线性化操作,通过求解一个偏微分方程,直接推导出部分饱和控制律。利用Lyapunov技术和LaSalle不变性定理保证了目标(即闭环)系统的收敛性和稳定性。为了验证该方法的实际性能,我们进行了硬件实验,以证明新方法在减少控制工作量的情况下取得了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Representation of vehicle dynamics in haptic teleoperation of aerial robots Adaptive visual tracking with reacquisition ability for arbitrary objects A novel method to simplify supervisor for AMS based on Petri nets and inequality analysis Human-robot cooperative object swinging Gravity compensation control of compliant joint systems with multiple drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1