Detecção de Fissuras Utilizando Redes Neurais Convolucionais

R. P. C. D. Oliveira, C. Mauricio, V. N. D. Santos, F. F. F. Peres
{"title":"Detecção de Fissuras Utilizando Redes Neurais Convolucionais","authors":"R. P. C. D. Oliveira, C. Mauricio, V. N. D. Santos, F. F. F. Peres","doi":"10.5753/sibgrapi.est.2021.20041","DOIUrl":null,"url":null,"abstract":"Fissuras em concreto representam manifestações patológicas e ocorrem por diversos motivos, mesmo que haja boas práticas na fase de construção. Em estruturas de grande porte, como pontes, túneis e barragens é exigido que, com certa periodicidade, ocorra inspeções visuais com objetivo de detectar, diagnosticar a causa e quando possível, reparar a fissura. Nos casos que não é possível reparar a fissura, se deve acompanhar o seu comportamento. Muitas técnicas computacionais para a detecção de fissuras têm sido propostas mas suas aplicações são limitadas pois as imagens de fissuras tendem a variar muito e neste caso, extrair informações como a localização da fissura em uma imagem requer que seja realizada uma segmentação a nível de pixel. Neste contexto, esse trabalho apresenta uma proposta utilizando o Detectron2, inspirado na rede neural convolucional Mask R-CNN, que oferece suporte para detecção de objetos, segmentação de instâncias, segmentação de panorâmica, e segmentação de semântica.","PeriodicalId":110864,"journal":{"name":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2021.20041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fissuras em concreto representam manifestações patológicas e ocorrem por diversos motivos, mesmo que haja boas práticas na fase de construção. Em estruturas de grande porte, como pontes, túneis e barragens é exigido que, com certa periodicidade, ocorra inspeções visuais com objetivo de detectar, diagnosticar a causa e quando possível, reparar a fissura. Nos casos que não é possível reparar a fissura, se deve acompanhar o seu comportamento. Muitas técnicas computacionais para a detecção de fissuras têm sido propostas mas suas aplicações são limitadas pois as imagens de fissuras tendem a variar muito e neste caso, extrair informações como a localização da fissura em uma imagem requer que seja realizada uma segmentação a nível de pixel. Neste contexto, esse trabalho apresenta uma proposta utilizando o Detectron2, inspirado na rede neural convolucional Mask R-CNN, que oferece suporte para detecção de objetos, segmentação de instâncias, segmentação de panorâmica, e segmentação de semântica.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用卷积神经网络进行裂缝检测
混凝土裂缝代表病理表现,发生的原因有很多,即使在施工阶段有良好的实践。对于桥梁、隧道和大坝等大型结构,需要定期进行目视检查,以检测、诊断原因,并在可能的情况下修复裂缝。在无法修复裂纹的情况下,应监测其行为。已经提出了许多裂缝检测的计算技术,但它们的应用有限,因为裂缝图像往往变化很大,在这种情况下,提取信息,如裂缝在图像中的位置,需要进行像素级分割。在此背景下,本文提出了一种利用Detectron2的方法,该方法受卷积神经网络掩模R-CNN的启发,支持对象检测、实例分割、全景分割和语义分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Virtual lines for offside situations analysis in football KutralNext: An Efficient Multi-label Fire and Smoke Image Recognition Model Using images to avoid collisions and bypass obstacles in indoor environments Detecção de Fissuras Utilizando Redes Neurais Convolucionais Methods for segmentation of spinal cord and esophagus in radiotherapy planning computed tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1