Signature verification based on line directionality

E. Zois, A. Nassiopoulos, V. Anastassopoulos
{"title":"Signature verification based on line directionality","authors":"E. Zois, A. Nassiopoulos, V. Anastassopoulos","doi":"10.1109/SIPS.2005.1579890","DOIUrl":null,"url":null,"abstract":"A novel technique is presented for off-line signature recognition and verification. The feature extraction procedure employs directional-vectors, similar to those used in chain codes, which provide a global measure of the signature image. The signature trace is transformed into the feature vector by measuring the directional strength of line segments having a chessboard distance equal to two. A probabilistic neural topology is employed for the design of the classifier. In order to obtain comparable results, the method was applied to a database already used in the literature. The verification procedure provides low classification error for authentic signatures while it eliminates the forgers.","PeriodicalId":436123,"journal":{"name":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2005.1579890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A novel technique is presented for off-line signature recognition and verification. The feature extraction procedure employs directional-vectors, similar to those used in chain codes, which provide a global measure of the signature image. The signature trace is transformed into the feature vector by measuring the directional strength of line segments having a chessboard distance equal to two. A probabilistic neural topology is employed for the design of the classifier. In order to obtain comparable results, the method was applied to a database already used in the literature. The verification procedure provides low classification error for authentic signatures while it eliminates the forgers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线路方向的签名验证
提出了一种新的离线签名识别与验证技术。特征提取过程采用方向向量,类似于链码中使用的方向向量,它提供了签名图像的全局度量。通过测量具有棋盘距离等于2的线段的方向强度,将签名轨迹转换为特征向量。分类器的设计采用了概率神经拓扑。为了获得可比较的结果,将该方法应用于文献中已使用的数据库。该验证过程在消除伪造者的同时,为真实签名提供了低分类误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient design of symbol detector for MIMO-OFDM based wireless LANs Scalable transcoding for video transmission over space-time OFDM systems A dynamic normalization technique for decoding LDPC codes A comprehensive energy model and energy-quality evaluation of wireless transceiver front-ends An AS-DSP for forward error correction applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1