Target Recognition and Range-measuring Method based on Binocular Stereo Vision

Guan Shuai, Ma Wenlun, Fan Jingjing, Liu Zhipeng
{"title":"Target Recognition and Range-measuring Method based on Binocular Stereo Vision","authors":"Guan Shuai, Ma Wenlun, Fan Jingjing, Liu Zhipeng","doi":"10.1109/CVCI51460.2020.9338662","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of high cost and limited installation of traditional unmanned vehicle environment perception methods, this paper proposes a method of personnel identification and distance measurement based on the fusion of YOLOv4 and binocular stereo vision. Through the annotation of the data set, the Darknet deep learning framework is used to train and recognize the personnel, and the binocular camera disparity data is used for personnel distance detection. The experimental results show that the recognition accuracy of this method is 0.941 and the distance error is less than 5%, which can meet the task requirements of unmanned vehicle and provide technical support for solving the environment perception problems of autonomous driving vehicle.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aiming at the problems of high cost and limited installation of traditional unmanned vehicle environment perception methods, this paper proposes a method of personnel identification and distance measurement based on the fusion of YOLOv4 and binocular stereo vision. Through the annotation of the data set, the Darknet deep learning framework is used to train and recognize the personnel, and the binocular camera disparity data is used for personnel distance detection. The experimental results show that the recognition accuracy of this method is 0.941 and the distance error is less than 5%, which can meet the task requirements of unmanned vehicle and provide technical support for solving the environment perception problems of autonomous driving vehicle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双目立体视觉的目标识别与测距方法
针对传统无人车环境感知方法成本高、安装受限等问题,本文提出了一种基于YOLOv4与双目立体视觉融合的人员识别与距离测量方法。通过对数据集的标注,利用Darknet深度学习框架对人员进行训练和识别,利用双目摄像机视差数据进行人员距离检测。实验结果表明,该方法的识别精度为0.941,距离误差小于5%,能够满足无人驾驶车辆的任务要求,为解决自动驾驶车辆的环境感知问题提供技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sensor Fusion of Camera, GNSS and IMU for Autonomous Driving Navigation Collision-avoidance steering control for autonomous vehicles using fast non-singular terminal sliding mode Energy management strategy based on velocity prediction for parallel plug-in hybrid electric bus Constrained Containment Control of Agents Network with Switching Topologies Multi-parameter driver intention recognition based on neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1