Development and application of neural network algorithms for process diagnostics

B. Upadhyaya, G. Mathai, E. Eryurek
{"title":"Development and application of neural network algorithms for process diagnostics","authors":"B. Upadhyaya, G. Mathai, E. Eryurek","doi":"10.1109/CDC.1990.203401","DOIUrl":null,"url":null,"abstract":"The following three problems are addressed: (1) multiple-input single-output heteroassociative networks for signal validation for distributed sensor arrays; (2) multiple-input multiple-output autoassociative networks for plant-wide monitoring of a set of process variables for diagnostics; and (3) artificial neural networks for online estimation of chemical composition from spectroscopy data. Both static and dynamic forms of the backpropagation network (BPN) have been developed and applied to the solution of these problems. Chemometric data from Raman FT (Fourier transform) spectroscopy was used to estimate chemical sample composition. Several features of network training and implementations are presented, including adaptive updating of the sigmoidal threshold function during training, an optimal choice of hidden layer nodes using Shannon's information theory approach, and automatic scaling of network inputs and outputs for data encoding and decoding. The details of the development and implementation of the multilayer perceptrons and applications to industrial problems are highlighted.<<ETX>>","PeriodicalId":287089,"journal":{"name":"29th IEEE Conference on Decision and Control","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1990.203401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The following three problems are addressed: (1) multiple-input single-output heteroassociative networks for signal validation for distributed sensor arrays; (2) multiple-input multiple-output autoassociative networks for plant-wide monitoring of a set of process variables for diagnostics; and (3) artificial neural networks for online estimation of chemical composition from spectroscopy data. Both static and dynamic forms of the backpropagation network (BPN) have been developed and applied to the solution of these problems. Chemometric data from Raman FT (Fourier transform) spectroscopy was used to estimate chemical sample composition. Several features of network training and implementations are presented, including adaptive updating of the sigmoidal threshold function during training, an optimal choice of hidden layer nodes using Shannon's information theory approach, and automatic scaling of network inputs and outputs for data encoding and decoding. The details of the development and implementation of the multilayer perceptrons and applications to industrial problems are highlighted.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过程诊断中神经网络算法的发展与应用
本文主要解决以下三个问题:(1)分布式传感器阵列信号验证的多输入单输出异构关联网络;(2)多输入多输出自关联网络,用于全厂监测一组过程变量,用于诊断;(3)利用人工神经网络在线估计光谱数据中的化学成分。静态和动态形式的反向传播网络(BPN)已被开发并应用于解决这些问题。利用拉曼傅立叶变换光谱的化学计量学数据来估计化学样品的成分。介绍了网络训练和实现的几个特点,包括训练过程中s型阈值函数的自适应更新,利用Shannon信息论方法对隐藏层节点进行最优选择,以及数据编码和解码时网络输入和输出的自动缩放。重点介绍了多层感知器的开发和实现的细节以及在工业问题上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distance to the nearest uncontrollable pair and algebraic Riccati equation Digital redesign of a continuous controller based on closed loop performance Time delay in adaptive filtering Equivalence of optimal control problems and the use of parameterization methods Evaluation of a technique to quantify microburst windshear hazard potential to aircraft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1