Intelligent Policy Selection for GPU Warp Scheduler

L. Chiou, Tsung-Han Yang, Jian-Tang Syu, Che-Pin Chang, Yeong-Jar Chang
{"title":"Intelligent Policy Selection for GPU Warp Scheduler","authors":"L. Chiou, Tsung-Han Yang, Jian-Tang Syu, Che-Pin Chang, Yeong-Jar Chang","doi":"10.1109/AICAS.2019.8771596","DOIUrl":null,"url":null,"abstract":"The graphics processing unit (GPU) is widely used in applications that require massive computing resources such as big data, machine learning, computer vision, etc. As the diversity of applications grows, the GPU’s performance becomes difficult to maintain by its warp scheduler. Most of the prior studies of the warp scheduler are based on static analysis of GPU hardware behavior for certain types of benchmarks. We propose for the first time (to the best of our knowledge), a machine learning approach to intelligently select suitable policies for various applications in runtime. The simulation results indicate that the proposed approach can maintain performance comparable to the best policy across different applications.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The graphics processing unit (GPU) is widely used in applications that require massive computing resources such as big data, machine learning, computer vision, etc. As the diversity of applications grows, the GPU’s performance becomes difficult to maintain by its warp scheduler. Most of the prior studies of the warp scheduler are based on static analysis of GPU hardware behavior for certain types of benchmarks. We propose for the first time (to the best of our knowledge), a machine learning approach to intelligently select suitable policies for various applications in runtime. The simulation results indicate that the proposed approach can maintain performance comparable to the best policy across different applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU Warp Scheduler的智能策略选择
图形处理单元(graphics processing unit, GPU)被广泛应用于大数据、机器学习、计算机视觉等需要大量计算资源的应用中。随着应用程序多样性的增长,GPU的性能变得难以通过其warp调度器来维持。先前对warp调度器的大多数研究都是基于对特定类型基准测试的GPU硬件行为的静态分析。我们首次(据我们所知)提出了一种机器学习方法,可以在运行时为各种应用程序智能地选择合适的策略。仿真结果表明,该方法可以在不同的应用程序中保持与最佳策略相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1