Detection and retrieval of cysts in joint ultrasound B-mode and elasticity breast images

Jingdan Zhang, S. Zhou, S. Brunke, C. Lowery, D. Comaniciu
{"title":"Detection and retrieval of cysts in joint ultrasound B-mode and elasticity breast images","authors":"Jingdan Zhang, S. Zhou, S. Brunke, C. Lowery, D. Comaniciu","doi":"10.1109/ISBI.2010.5490387","DOIUrl":null,"url":null,"abstract":"Distinguishing cysts from other tumors is a routine clinical practice for diagnosing breast cancer. It has shown that more accurate diagnosis can be achieved by combining elasticity images with traditional B-mode ultrasound images [1]. In this paper, we propose a fully automatic system to detect cysts jointly in both B-mode and elasticity images. It is based on database-guided techniques that learn the knowledge of cyst appearance automatically from B-mode and elasticity images in a database. Further, for a detected cyst in a query image, the cysts with similar image appearance in the database are retrieved to improve diagnostic accuracy and confidence. In the experiment, we show that our system achieves high sensitivity and specificity in cyst diagnosis.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Distinguishing cysts from other tumors is a routine clinical practice for diagnosing breast cancer. It has shown that more accurate diagnosis can be achieved by combining elasticity images with traditional B-mode ultrasound images [1]. In this paper, we propose a fully automatic system to detect cysts jointly in both B-mode and elasticity images. It is based on database-guided techniques that learn the knowledge of cyst appearance automatically from B-mode and elasticity images in a database. Further, for a detected cyst in a query image, the cysts with similar image appearance in the database are retrieved to improve diagnostic accuracy and confidence. In the experiment, we show that our system achieves high sensitivity and specificity in cyst diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关节超声b型和弹性乳房图像中囊肿的检测和恢复
将囊肿与其他肿瘤区分开来是诊断乳腺癌的常规临床实践。研究表明,将弹性图像与传统b超图像相结合可以获得更准确的诊断[1]。在本文中,我们提出了一个全自动的系统来检测囊肿在b模式和弹性图像。它基于数据库引导技术,从数据库中的b模式和弹性图像中自动学习囊肿外观的知识。此外,对于查询图像中检测到的囊肿,检索数据库中具有相似图像外观的囊肿,以提高诊断准确性和置信度。实验结果表明,该系统对囊肿的诊断具有较高的敏感性和特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1