Human Learning and Coordination in Lower-limb Physical Interactions

Sunny Amatya, S. M. R. Sorkhabadi, Wenlong Zhang
{"title":"Human Learning and Coordination in Lower-limb Physical Interactions","authors":"Sunny Amatya, S. M. R. Sorkhabadi, Wenlong Zhang","doi":"10.23919/ACC45564.2020.9147738","DOIUrl":null,"url":null,"abstract":"This paper explores the gait learning and coordination through physical human-human interaction. The interaction and coordination are modeled as a two-step process: 1) encoding the human gait as a periodic process and 2) adjustment of the periodic gait cycle based on the external forces due to physical interactions. Three-legged walking experiments are conducted with two human dyads. Magnitude and direction of the interaction force, as well as the knee joint angles and ground reaction forces of the tied legs are collected. The knee joint trajectory of the two participants is modeled using dynamic movement primitives (DMP) coupled with force feedback though iterative learning. Gait coordination is modeled as a learning process based on kinematics from the last gait cycle and real-time interaction force feedback. The proposed method is compared with a popular baseline DMP model, which performs batch regression based on data from the previous gait cycle. The proposed model performed better in modeling one pair in the cooperative experiment compared to the baseline algorithm. The results and approaches for improving the algorithm are further discussed.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC45564.2020.9147738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper explores the gait learning and coordination through physical human-human interaction. The interaction and coordination are modeled as a two-step process: 1) encoding the human gait as a periodic process and 2) adjustment of the periodic gait cycle based on the external forces due to physical interactions. Three-legged walking experiments are conducted with two human dyads. Magnitude and direction of the interaction force, as well as the knee joint angles and ground reaction forces of the tied legs are collected. The knee joint trajectory of the two participants is modeled using dynamic movement primitives (DMP) coupled with force feedback though iterative learning. Gait coordination is modeled as a learning process based on kinematics from the last gait cycle and real-time interaction force feedback. The proposed method is compared with a popular baseline DMP model, which performs batch regression based on data from the previous gait cycle. The proposed model performed better in modeling one pair in the cooperative experiment compared to the baseline algorithm. The results and approaches for improving the algorithm are further discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下肢肢体相互作用中的人类学习和协调
本文探讨了通过人体互动的步态学习和协调。将相互作用和协调建模为两步过程:1)将人体步态编码为周期过程;2)基于物理相互作用产生的外力对周期步态周期进行调整。用两对人进行了三足行走实验。收集作用力的大小和方向,以及膝关节角度和绑扎腿的地面反作用力。通过迭代学习,采用动态运动原语(DMP)和力反馈相结合的方法对两名参与者的膝关节运动轨迹进行建模。步态协调建模为基于上一个步态周期的运动学和实时交互力反馈的学习过程。将该方法与一种流行的基线DMP模型进行了比较,该模型基于前一个步态周期的数据进行批量回归。与基线算法相比,该模型在合作实验中对一对的建模效果更好。进一步讨论了改进算法的方法和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metric Interval Temporal Logic based Reinforcement Learning with Runtime Monitoring and Self-Correction Boundary Control of Coupled Hyperbolic PDEs for Two-dimensional Vibration Suppression of a Deep-sea Construction Vessel Localizing Data Manipulators in Distributed Mode Shape Identification of Power Systems Boundary prescribed–time stabilization of a pair of coupled reaction–diffusion equations An Optimization-Based Iterative Learning Control Design Method for UAV’s Trajectory Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1