Automatic Conversation Turn-Taking Segmentation in Semantic Facet

Dongin Jung, Yoon-Sik Cho
{"title":"Automatic Conversation Turn-Taking Segmentation in Semantic Facet","authors":"Dongin Jung, Yoon-Sik Cho","doi":"10.1109/ICEIC57457.2023.10049858","DOIUrl":null,"url":null,"abstract":"Turn-taking is a significant aspect of a smooth conversation system. Detecting end-of-turn can be difficult for automatic conversation systems, and this can cause misleading conversation systems. To make a conversational system recognizing turn transition points, we propose a token-level turn-taking segmentation using linguistic features. This task imitates the automatic speech recognition environment by organizing several settings. Moreover, we utilize GPT-2, which is well known as a pretrained generative language model, to be able to predict in token-level live text stream. We evaluate our model compared to RNN series models in general conversation datasets and explore model prediction with test sample scenarios.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Turn-taking is a significant aspect of a smooth conversation system. Detecting end-of-turn can be difficult for automatic conversation systems, and this can cause misleading conversation systems. To make a conversational system recognizing turn transition points, we propose a token-level turn-taking segmentation using linguistic features. This task imitates the automatic speech recognition environment by organizing several settings. Moreover, we utilize GPT-2, which is well known as a pretrained generative language model, to be able to predict in token-level live text stream. We evaluate our model compared to RNN series models in general conversation datasets and explore model prediction with test sample scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语义面会话自动分词
轮流是流畅对话系统的一个重要方面。自动对话系统很难检测到回合结束,这可能会导致对话系统产生误导。为了使会话系统能够识别转折点,我们提出了一种基于语言特征的符号级转折分割方法。这个任务通过组织几个设置来模拟自动语音识别环境。此外,我们利用GPT-2,这是众所周知的预训练生成语言模型,能够在令牌级实时文本流中进行预测。我们将我们的模型与常规会话数据集中的RNN系列模型进行比较,并通过测试样本场景探索模型预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWT+DWT: Deep Learning Domain Generalization Techniques Using Discrete Wavelet Transform with Deep Whitening Transform Fast Virtual Keyboard Typing Using Vowel Hand Gesture Recognition A Study on Edge Computing-Based Microservices Architecture Supporting IoT Device Management and Artificial Intelligence Inference Efficient Pavement Crack Detection in Drone Images using Deep Neural Networks High Performance 3.3KV 4H-SiC MOSFET with a Floating Island and Hetero Junction Diode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1