Performance Analysis of the Competitive Learning Algorithms on Gaussian Data in Automatic Cluster Selection

Harsh Khatter, V. Aggarwal, A. Ahlawat
{"title":"Performance Analysis of the Competitive Learning Algorithms on Gaussian Data in Automatic Cluster Selection","authors":"Harsh Khatter, V. Aggarwal, A. Ahlawat","doi":"10.1109/CICT.2016.19","DOIUrl":null,"url":null,"abstract":"A clustering problem occurs when an object needs to be assigned into a predefined group or class based on a number of observed attributes related to that object. The existing Competitive Learning (CL) algorithm and its variants (Frequency Sensitive Competitive Learning (FSCL), Rival Penalized Competitive Learning (RPCL), and Rival Penalized Controlled Competitive Learning (RPCCL)) have provided an appealing way to perform data clustering without knowing the exact number of clusters prior to clustering. This paper studies and analyzes the performance of these algorithms. The experimental results have been analyzed on the 2-D Gaussian data with the learning rate parameter kept same for all algorithms. The result showed that if number of output clusters is chosen equal to the number of clusters present in the input data then the performance for all the algorithms remains almost equal but when this number is chosen larger than the clusters present, then the RPCCL outperforms the other algorithms. Thus RPCCL gives the best performance in automatic cluster selection and we can use this feature of RPCCL algorithm in various useful applications like cluster analysis, curve detection, image segmentation, medical data analysis etc.","PeriodicalId":118509,"journal":{"name":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT.2016.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A clustering problem occurs when an object needs to be assigned into a predefined group or class based on a number of observed attributes related to that object. The existing Competitive Learning (CL) algorithm and its variants (Frequency Sensitive Competitive Learning (FSCL), Rival Penalized Competitive Learning (RPCL), and Rival Penalized Controlled Competitive Learning (RPCCL)) have provided an appealing way to perform data clustering without knowing the exact number of clusters prior to clustering. This paper studies and analyzes the performance of these algorithms. The experimental results have been analyzed on the 2-D Gaussian data with the learning rate parameter kept same for all algorithms. The result showed that if number of output clusters is chosen equal to the number of clusters present in the input data then the performance for all the algorithms remains almost equal but when this number is chosen larger than the clusters present, then the RPCCL outperforms the other algorithms. Thus RPCCL gives the best performance in automatic cluster selection and we can use this feature of RPCCL algorithm in various useful applications like cluster analysis, curve detection, image segmentation, medical data analysis etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯数据竞争学习算法在自动聚类选择中的性能分析
当需要根据观察到的与对象相关的许多属性将对象分配到预定义的组或类中时,就会出现聚类问题。现有的竞争学习(CL)算法及其变体(频率敏感竞争学习(FSCL)、对手惩罚竞争学习(RPCL)和对手惩罚控制竞争学习(RPCCL))提供了一种吸引人的方法来执行数据聚类,而在聚类之前不知道确切的聚类数量。本文对这些算法的性能进行了研究和分析。在所有算法的学习率参数相同的情况下,在二维高斯数据上对实验结果进行了分析。结果表明,如果选择输出簇的数量等于输入数据中存在的簇的数量,那么所有算法的性能几乎保持相等,但是当选择的数量大于存在的簇时,则RPCCL优于其他算法。因此,RPCCL算法在自动聚类选择方面具有最好的性能,我们可以在聚类分析、曲线检测、图像分割、医疗数据分析等各种有用的应用中使用RPCCL算法的这一特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Based Image Retrieval Using Watershed Transformation Modified ZRP to Identify Cooperative Attacks Short Term Load Forecasting Using ANN and Multiple Linear Regression Prediction of Carbon Stock Available in Forest Using Naive Bayes Approach CAD for the Detection of Fetal Electrocardiogram through Neuro-Fuzzy Logic and Wavelets Systems for Telemetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1