Impact of Pre-Processing Decisions on Automated ECG Classification Accuracy

Adrian K. Cornely, Grace M. Mirsky
{"title":"Impact of Pre-Processing Decisions on Automated ECG Classification Accuracy","authors":"Adrian K. Cornely, Grace M. Mirsky","doi":"10.22489/CinC.2022.252","DOIUrl":null,"url":null,"abstract":"Electrocardiography is well established as an effective clinical tool for detection and diagnosis of cardiac arrhythmias and abnormalities. The objective of the 2021 PhysioNet/Computing in Cardiology Challenge was for teams to develop automated classification algorithms for reduced-lead ECGs. While it is well-known that proper pre-processing is very important for the success of classification algorithms, there is not universal agreement as to the appropriate pre-processing steps for automated ECG classification. Papers from the top 15 finishers in the Challenge as well as the bottom ten finishers were examined to determine what pre-processing steps were applied by each team. The most commonly used pre-processing steps included resampling to a consistent sampling rate, applying a bandpass filter, normalizing and using a fixed signal length. There were a number of similarities in the preprocessing steps used by the top 15 teams, whereas all of these steps were not applied in the majority of approaches for the bottom ten teams. In the bottom ten participants, less than half used a bandpass filter, and only three applied some type of normalization. This investigation underscores the importance of appropriate pre-processing for strong classification accuracy and the need for a universal approach to pre-processing techniques in automated ECG classification.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocardiography is well established as an effective clinical tool for detection and diagnosis of cardiac arrhythmias and abnormalities. The objective of the 2021 PhysioNet/Computing in Cardiology Challenge was for teams to develop automated classification algorithms for reduced-lead ECGs. While it is well-known that proper pre-processing is very important for the success of classification algorithms, there is not universal agreement as to the appropriate pre-processing steps for automated ECG classification. Papers from the top 15 finishers in the Challenge as well as the bottom ten finishers were examined to determine what pre-processing steps were applied by each team. The most commonly used pre-processing steps included resampling to a consistent sampling rate, applying a bandpass filter, normalizing and using a fixed signal length. There were a number of similarities in the preprocessing steps used by the top 15 teams, whereas all of these steps were not applied in the majority of approaches for the bottom ten teams. In the bottom ten participants, less than half used a bandpass filter, and only three applied some type of normalization. This investigation underscores the importance of appropriate pre-processing for strong classification accuracy and the need for a universal approach to pre-processing techniques in automated ECG classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预处理决策对自动心电分类精度的影响
心电图是一种有效的检测和诊断心律失常和异常的临床工具。2021年PhysioNet/Computing in Cardiology挑战赛的目标是让团队开发用于减少导联心电图的自动分类算法。虽然众所周知,适当的预处理对于分类算法的成功是非常重要的,但对于自动心电分类的适当预处理步骤并没有普遍的共识。来自挑战赛前15名和后10名的论文将被检查,以确定每个团队应用了哪些预处理步骤。最常用的预处理步骤包括重新采样到一致的采样率,应用带通滤波器,归一化和使用固定的信号长度。在前15个团队使用的预处理步骤中有许多相似之处,而所有这些步骤并没有应用于后10个团队的大多数方法中。在最后十位参与者中,不到一半的人使用了带通滤波器,只有三个人应用了某种类型的归一化。这项研究强调了适当的预处理对强分类准确性的重要性,以及在自动心电分类中需要一种通用的预处理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure Heart Pulse Demodulation from Emfit Mattress Sensor Using Spectral and Source Separation Techniques Automated Algorithm for QRS Detection in Cardiac Arrest Patients with PEA Extraction Algorithm for Morphologically Preserved Non-Invasive Multi-Channel Fetal ECG Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1