Towards efficient wind energy monitoring: Learning more from open source data

Alexander Marinšek, L. De Strycker
{"title":"Towards efficient wind energy monitoring: Learning more from open source data","authors":"Alexander Marinšek, L. De Strycker","doi":"10.1109/iCCECE49321.2020.9231090","DOIUrl":null,"url":null,"abstract":"Europe’s massive shift towards sustainable energy production has triggered a variety of new large scale projects, and wind energy is a crucial part of the effort to achieve a carbon-free future. However, because of their low financial impact and relatively high measurement campaign costs, small scale projects are often deemed impractical beforehand. To help small communities gain insight on the wind energy conditions in their surroundings, the present work briefly introduces a measuring station (MEST) concept based on affordable electronic components and proposes a solution to alleviating the effects of inevitable measurement data inconsistency on the energy yield analysis. By leveraging open source machine learning models and establishing a link with the publicly available ERA5-Land climate database, missing wind speed measurement data is reconstructed at an accuracy of up to 0.11 $\\frac{m}{s}$. The impact of data reconstruction on the estimated energy production of a wind turbine (WT) erected at the measuring location is then evaluated using the measurement data acquired by a MEST prototype and the ERA5-Land data recorded during October and November 2019. The results indicate that at a location experiencing moderate wind speeds, the estimated energy output of the WT is increased by up to 2 % in comparison with other data analysis procedures. Although the minute underestimation is not of great importance to the success of the analysis, the inaccuracies at higher wind speeds have a far more profound effect on the WT’s estimated energy output, and they can stop a potentially successful wind energy project from gaining further attention.","PeriodicalId":413847,"journal":{"name":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCCECE49321.2020.9231090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Europe’s massive shift towards sustainable energy production has triggered a variety of new large scale projects, and wind energy is a crucial part of the effort to achieve a carbon-free future. However, because of their low financial impact and relatively high measurement campaign costs, small scale projects are often deemed impractical beforehand. To help small communities gain insight on the wind energy conditions in their surroundings, the present work briefly introduces a measuring station (MEST) concept based on affordable electronic components and proposes a solution to alleviating the effects of inevitable measurement data inconsistency on the energy yield analysis. By leveraging open source machine learning models and establishing a link with the publicly available ERA5-Land climate database, missing wind speed measurement data is reconstructed at an accuracy of up to 0.11 $\frac{m}{s}$. The impact of data reconstruction on the estimated energy production of a wind turbine (WT) erected at the measuring location is then evaluated using the measurement data acquired by a MEST prototype and the ERA5-Land data recorded during October and November 2019. The results indicate that at a location experiencing moderate wind speeds, the estimated energy output of the WT is increased by up to 2 % in comparison with other data analysis procedures. Although the minute underestimation is not of great importance to the success of the analysis, the inaccuracies at higher wind speeds have a far more profound effect on the WT’s estimated energy output, and they can stop a potentially successful wind energy project from gaining further attention.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向高效风能监测:从开源数据中学习更多
欧洲向可持续能源生产的巨大转变引发了各种新的大型项目,风能是实现无碳未来努力的关键部分。然而,由于小规模项目的财政影响较小,且测量活动成本相对较高,因此通常认为小规模项目事先不切实际。为了帮助小型社区了解其周围的风能状况,本工作简要介绍了基于价格合理的电子元件的测量站(MEST)概念,并提出了一种解决方案,以减轻不可避免的测量数据不一致对发电量分析的影响。通过利用开源机器学习模型并与公开可用的ERA5-Land气候数据库建立链接,以高达0.11 $\frac{m}{s}$的精度重建丢失的风速测量数据。然后使用MEST原型获得的测量数据和2019年10月和11月记录的ERA5-Land数据评估数据重建对安装在测量位置的风力涡轮机(WT)的估计发电量的影响。结果表明,在经历中等风速的位置,与其他数据分析程序相比,WT的估计能量输出增加了2%。尽管微小的低估对分析的成功并不重要,但在较高风速下的不准确性对WT估计的能量输出有更深远的影响,它们可以阻止一个潜在成功的风能项目获得进一步的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Key-Value Store using High Level Synthesis Flow for Securities Trading System Design and Analysis of Fractional-Order PID Controller and its variants for Nonlinear Process using Kalman Filter A CMOS Current Starved VCO for Energy Harvesting applications Iris Recognition Performance Analysis for Noncooperative Conditions Effect of Preprocessing on Performance of Neural Networks for Microscopy Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1