Computer-aided thyroid nodule detection in ultrasound images

D. Maroulis, M. Savelonas, S. Karkanis, Dimitrios K. Iakovidis, N. Dimitropoulos
{"title":"Computer-aided thyroid nodule detection in ultrasound images","authors":"D. Maroulis, M. Savelonas, S. Karkanis, Dimitrios K. Iakovidis, N. Dimitropoulos","doi":"10.1109/CBMS.2005.44","DOIUrl":null,"url":null,"abstract":"Nodular thyroid disease is a frequent occurrence in clinical practice and it is associated with increased risk of thyroid cancer and hyperfunction. In this paper we propose a novel method for computer-aided detection of thyroid nodules in ultrasound (US) images. The proposed method is based on a level-set image segmentation approach that takes into account the inhomogeneity of the US images. This novel method was experimentally evaluated using US images acquired from 35 patients. The results show that the proposed method achieves more accurate delineation of the thyroid nodules in the US images and faster convergence than other relevant methods.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Nodular thyroid disease is a frequent occurrence in clinical practice and it is associated with increased risk of thyroid cancer and hyperfunction. In this paper we propose a novel method for computer-aided detection of thyroid nodules in ultrasound (US) images. The proposed method is based on a level-set image segmentation approach that takes into account the inhomogeneity of the US images. This novel method was experimentally evaluated using US images acquired from 35 patients. The results show that the proposed method achieves more accurate delineation of the thyroid nodules in the US images and faster convergence than other relevant methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声图像中甲状腺结节的计算机辅助检测
甲状腺结节性疾病是临床上常见的疾病,它与甲状腺癌和功能亢进的风险增加有关。在本文中,我们提出了一种计算机辅助检测甲状腺结节超声图像的新方法。所提出的方法是基于考虑到美国图像的非均匀性的水平集图像分割方法。采用35例患者的超声图像对这种新方法进行了实验评估。结果表明,与其他相关方法相比,该方法能够更准确地描绘甲状腺结节的US图像,并且收敛速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov model-based clustering for efficient patient care Incremental learning of ensemble classifiers on ECG data Grid-enabled workflows for data intensive medical applications Case-based tissue classification for monitoring leg ulcer healing Optimisation of neural network training through pre-establishment of synaptic weights applied to body surface mapping classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1