Automatically Generate Rigged Character from Single Image

Zhanpeng Huang, Rui Han, Jianwen Huang, Hao Yin, Zipeng Qin, Zibin Wang
{"title":"Automatically Generate Rigged Character from Single Image","authors":"Zhanpeng Huang, Rui Han, Jianwen Huang, Hao Yin, Zipeng Qin, Zibin Wang","doi":"10.1145/3469877.3490565","DOIUrl":null,"url":null,"abstract":"Animation plays an important role in virtual reality and augmented reality applications. However, it requires great efforts for non-professional users to create animation assets. In this paper, we propose a systematic pipeline to generate ready-to-used characters from images for real-time animation without user intervention. Rather than per-pixel mapping or synthesis in image space using optical flow or generative models, we employ an approximate geometric embodiment to undertake 3D animation without large distortion. The geometry structure is generated from a type-agnostic character. A skeleton adaption is then adopted to guarantee semantic motion transfer to the geometry proxy. The generated character is compatible with standard 3D graphics engines and ready to use for real-time applications. Experiments show that our method works on various images (e.g. sketches, cartoons, and photos) of most object categories (e.g. human, animals, and non-creatures). We develop an AR demo to show its potential usage for fast prototyping.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Animation plays an important role in virtual reality and augmented reality applications. However, it requires great efforts for non-professional users to create animation assets. In this paper, we propose a systematic pipeline to generate ready-to-used characters from images for real-time animation without user intervention. Rather than per-pixel mapping or synthesis in image space using optical flow or generative models, we employ an approximate geometric embodiment to undertake 3D animation without large distortion. The geometry structure is generated from a type-agnostic character. A skeleton adaption is then adopted to guarantee semantic motion transfer to the geometry proxy. The generated character is compatible with standard 3D graphics engines and ready to use for real-time applications. Experiments show that our method works on various images (e.g. sketches, cartoons, and photos) of most object categories (e.g. human, animals, and non-creatures). We develop an AR demo to show its potential usage for fast prototyping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动生成操纵字符从单个图像
动画在虚拟现实和增强现实应用中起着重要的作用。然而,对于非专业用户来说,创建动画资产需要付出很大的努力。在本文中,我们提出了一种系统的管道,可以在没有用户干预的情况下从图像中生成实时动画的现成字符。我们不是使用光流或生成模型在图像空间中进行逐像素映射或合成,而是采用近似几何实施例来进行没有大失真的3D动画。几何结构是由类型不可知的字符生成的。然后采用骨架自适应来保证语义运动向几何代理的传递。生成的字符与标准的3D图形引擎兼容,并准备用于实时应用程序。实验表明,我们的方法适用于大多数对象类别(如人类、动物和非生物)的各种图像(如草图、漫画和照片)。我们开发了一个AR演示来展示它在快速原型设计中的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1