Mining Educational Data to Predict Academic Dropouts: a Case Study in Blended Learning Course

Otgontsetseg Sukhbaatar, K. Ogata, T. Usagawa
{"title":"Mining Educational Data to Predict Academic Dropouts: a Case Study in Blended Learning Course","authors":"Otgontsetseg Sukhbaatar, K. Ogata, T. Usagawa","doi":"10.1109/TENCON.2018.8650138","DOIUrl":null,"url":null,"abstract":"Learning management systems generate a large amount of data, where knowledge discovery is possible using data mining techniques. We proposed simple prediction scheme using decision tree analysis for purpose of classification to identify dropout prone students in the middle of the semester based on previous year’s course characteristics for that course. The data included 717 students’ online activities in compulsory, sophomore level course with blended learning styles, 79% of the actual dropout students were predicted correctly.","PeriodicalId":132900,"journal":{"name":"TENCON 2018 - 2018 IEEE Region 10 Conference","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2018 - 2018 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2018.8650138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Learning management systems generate a large amount of data, where knowledge discovery is possible using data mining techniques. We proposed simple prediction scheme using decision tree analysis for purpose of classification to identify dropout prone students in the middle of the semester based on previous year’s course characteristics for that course. The data included 717 students’ online activities in compulsory, sophomore level course with blended learning styles, 79% of the actual dropout students were predicted correctly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘教育数据预测学业辍学:混合式学习课程的案例研究
学习管理系统产生大量的数据,使用数据挖掘技术可以发现知识。我们提出了一种简单的预测方案,利用决策树分析进行分类,根据上一年的课程特征来识别学期中期的退学倾向学生。数据包括717名学生的在线必修课程,二年级水平的混合学习方式,79%的实际退学学生被预测正确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency Profile Improvement of a Microgrid through Aggregated Demand Response A Study on Coarse Stage Bit Allocation to Improve Power Efficiency of a 10-bit Coarse-Fine SAR ADC Implemented in 65nm CMOS Process for Environmental Sensing Applications Analysis on the Limitation of Number of Channels in WDM System Based on Photonic Microring Resonator BMK Stick: IMU-Based Motion Recognition Air Mouse and Five-Multikey Keyboard Demand Response for Enhancing Survivability of Microgrids During Islanded Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1