Pedestrian Video Data Abstraction and Classification for Surveillance System

Ho-chul Shin, Jae-Y. Lee
{"title":"Pedestrian Video Data Abstraction and Classification for Surveillance System","authors":"Ho-chul Shin, Jae-Y. Lee","doi":"10.1109/ICTC.2018.8539426","DOIUrl":null,"url":null,"abstract":"In this study, we have developed abstracted pedestrian behavior representation and classification method for pedestrian video surveillance system. An effective intelligent surveillance system can be constructed if the high-resolution surveillance image information is efficiently summarized. The motion of the pedestrian is represented by a multi-layer grid map using a detector and a tracker. A normal pattern and anomalous pattern database were constructed and classified using the CNN classifier. With the abstracted pedestrian data and CNN network, the abnormal situation can be detected up to recall 92.0%, precision 99.9%.","PeriodicalId":417962,"journal":{"name":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC.2018.8539426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, we have developed abstracted pedestrian behavior representation and classification method for pedestrian video surveillance system. An effective intelligent surveillance system can be constructed if the high-resolution surveillance image information is efficiently summarized. The motion of the pedestrian is represented by a multi-layer grid map using a detector and a tracker. A normal pattern and anomalous pattern database were constructed and classified using the CNN classifier. With the abstracted pedestrian data and CNN network, the abnormal situation can be detected up to recall 92.0%, precision 99.9%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行人视频数据的提取与分类
在本研究中,我们开发了行人视频监控系统的抽象行人行为表示和分类方法。对高分辨率的监控图像信息进行有效的汇总,才能构建有效的智能监控系统。行人的运动由多层网格图表示,其中使用检测器和跟踪器。构建了正常模式和异常模式数据库,并使用CNN分类器进行了分类。利用提取的行人数据和CNN网络,检测异常情况的召回率高达92.0%,准确率高达99.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Load Balancing Mechanism in Mobile Gateway with Heterogeneous Network A Generalized SDN Framework for Optical Wireless Communication Networks Hypermedia Applications with Transcoding Robust Data Embedding Method Effectiveness Analysis of Warning Service using V2X Communication Technology at Intersection Combined Access Barring for Energy and Delay Constrained Machine Type Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1