{"title":"Enhancement of Heat Transfer From Extended Surfaces by CFD","authors":"L. Sahoo","doi":"10.2139/ssrn.3549677","DOIUrl":null,"url":null,"abstract":"Theoretical studies and analysis of heat transfer from a rectangular extended surfaces and a pin finned plate studied to calculate the average Nusselt number in parallel, vertical direction placed along the sidewall. The total rise of the mean Nusselt number is noticed around 36% for pin finned plate with respect to a plain plate. This is examined with optimal fin spacing of Sv with L ratio equals to 0.2 and Sh with W ratio equals to 0.25, height of extended surfaces 24 mm (Height to thickness ratio 8), and 45o angle of inclination . The mean Nusselt number decreases with rise in angle of inclination and also increases with rise in aspect ratio. Present study reveals that in-line and staggered arrangements do not yield appreciably different results.The maximum average Nusselt number difference between conductive and non-conductive fins is around 5 % for S<sub>h</sub>/W= 0.33, S<sub>v</sub>/L =0.2 at θ = 45°, fin height of 6 mm (H/t=2).","PeriodicalId":412570,"journal":{"name":"Electrochemistry eJournal","volume":"340 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3549677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Theoretical studies and analysis of heat transfer from a rectangular extended surfaces and a pin finned plate studied to calculate the average Nusselt number in parallel, vertical direction placed along the sidewall. The total rise of the mean Nusselt number is noticed around 36% for pin finned plate with respect to a plain plate. This is examined with optimal fin spacing of Sv with L ratio equals to 0.2 and Sh with W ratio equals to 0.25, height of extended surfaces 24 mm (Height to thickness ratio 8), and 45o angle of inclination . The mean Nusselt number decreases with rise in angle of inclination and also increases with rise in aspect ratio. Present study reveals that in-line and staggered arrangements do not yield appreciably different results.The maximum average Nusselt number difference between conductive and non-conductive fins is around 5 % for Sh/W= 0.33, Sv/L =0.2 at θ = 45°, fin height of 6 mm (H/t=2).