Vision-Based Rain Gauge for Dynamic Scenes

Cheen-Hau Tan, Jie Chen, Yun Ni, Lap-Pui Chau, L. M. Soh
{"title":"Vision-Based Rain Gauge for Dynamic Scenes","authors":"Cheen-Hau Tan, Jie Chen, Yun Ni, Lap-Pui Chau, L. M. Soh","doi":"10.1109/ICDSP.2018.8631542","DOIUrl":null,"url":null,"abstract":"In this paper we develop a vision-based rain intensity measurement method for dynamic scenes. The method first measures the area density of rain by analyzing temporal changes in pixel values in the video input. The area density, represented as a binary rain map, is then mapped to a rain intensity value using linear regression. To ensure temporal consistency of scene content across frames in dynamic scenes, we applied superpixel-based content alignment. Potential false detections in the binary rain map are removed using directional morphological opening. Experiments show that both superpixel-based content alignment and morphological opening are important for good rain map generation and rain intensity estimation","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we develop a vision-based rain intensity measurement method for dynamic scenes. The method first measures the area density of rain by analyzing temporal changes in pixel values in the video input. The area density, represented as a binary rain map, is then mapped to a rain intensity value using linear regression. To ensure temporal consistency of scene content across frames in dynamic scenes, we applied superpixel-based content alignment. Potential false detections in the binary rain map are removed using directional morphological opening. Experiments show that both superpixel-based content alignment and morphological opening are important for good rain map generation and rain intensity estimation
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉的动态场景雨量计
本文提出了一种基于视觉的动态场景雨强测量方法。该方法首先通过分析视频输入中像素值的时间变化来测量雨的面积密度。区域密度表示为二值雨图,然后使用线性回归将其映射为雨强度值。为了确保动态场景中场景内容跨帧的时间一致性,我们应用了基于超像素的内容对齐。在二值雨图中潜在的错误检测被使用定向形态学打开去除。实验表明,基于超像素的内容对齐和形态开放对于生成良好的雨图和估计雨强都很重要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1